The answer is (2). You can think about this question in terms of the Bohr's model of the atom or in terms of quantum chemistry. In the Bohr model, electrons exist in discrete "shells," each respresenting a fixed spherical distance from the nucleus in which electrons of certain energy levels orbit the nucleus. The larger the shell (the greater the "orbit" radius), the greater the energy of the "orbiting" electron (I use quotations because electrons don't actually orbit the nucleus in the traditional sense, as you may know). Thus, according to the Bohr model, a third shell electron should be farther from the nucleus and have greater energy than an electron in the first shell.
The quantum model is differs drastically from the Bohr model in many ways, but the essence is the same. A larger principal quantum number indicates 1) greater overall energy and 2) a probability distribution spread a bit more outward.
Mass of solute = 25.8 g
mass solution = 212 g
% =( mass of solute / mass solution ) x 100
% = ( 25.8 / 212 ) x 100
% = 0.122 x 100
= 12.2 %
<u><em>The answer is definitely the sun</em></u> because a sun is a star. Other stars are to far, so thats why its soo tinny. Some stars are brighter than the sun... But your answer is definitely <u><em>SUN</em></u>...
Answer:
False
Explanation:
Increase in polarity of a molecule leads to higher boiling points. The more polar a molecule is, the higher the energy required to breaks intermolecular forces of attraction hence the higher the boiling point. This is the reason why ionic compounds and compounds having polar covalent bonds in them tend to have high boiling points.
Answer: Option (c) is the correct answer.
Explanation:
When an acid or base is added to a solution then any resistance by the solution in changing the pH of the solution is known as a buffer.
This is because a buffer has the ability to not get affected by the addition of small amounts of an acid or a base. As a result, it helps in maintaining the pH of the solution.
In the give case, when we add the HCl then more number of protons will dissociate. This causes the acetate to react with the protons and leads to the formation of acetic acid.
We know that acetic acid is a weak acid and it dissociates partially or feebly. Therefore, no change in pH will take place.
Thus, we can conclude that equation
represents the chemical reaction that accounts for the fact that acid was added but there was no detectable change in pH.