The length of the bacteria should be written in scientific notation.
0.00365 in scientific notation = 3 × 10^-3
Given.
length of the bacteria in decimal = 0.00365 cm long
Scientific notation is written in the format x × 10ⁿ
where,
x = any number between digit 1 and 10
n = exponent (positive or negative).
- To have a negative exponent value, move decimal to the right
- To have a positive exponent value, move the decimal point to the left.
In this case, the nearest significant value is 3
So move the decimal point three times to where 3 is
That is,
0.00365 = 3.65
Since the decimal point is moved to the right 3 times, n = - 3
we have 10^-3
Therefore,
0.00365 in scientific notation = 3 × 10^-3
Read more:
brainly.com/question/10401258
Step-by-step explanation:
Consider an engineering material of initial length Lo, Area (A), Modulus of elasticity (E) and applied a force P due to which change in the length of the material is δ2 from it’s original length (Lo)
Initial length of the material is Lo. Hence, at time t = 0 when no force applied on the material the length of the material will not change (i.e., at time t=0, δ1 = 0)
Modulus of elasticity of the material:
![E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
Area of the material:
![E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
![A=\frac{P \cdot L_{o}}{E\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BE%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
Length of the material:
![E=\frac{P \cdot L_{0}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7B0%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
![L_{0}=\frac{E \cdot A\left[\delta_{2}-\delta_{1}\right]}{P}](https://tex.z-dn.net/?f=L_%7B0%7D%3D%5Cfrac%7BE%20%5Ccdot%20A%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D%7BP%7D)
Answer:
(- 4, 1 )
Step-by-step explanation:
Under a reflection in the x- axis
a point (x, y ) → (x, - y ), thus
(- 4, - 1 ) → (- 4, 1 )
The slope of the line does not change regardless of value of x. therefore slope is still 3.
<h2>
Answer:</h2>
cos 28°cos 62°– sin 28°sin 62° = 0
<h2>
Step-by-step explanation:</h2>
From one of the trigonometric identities stated as follows;
<em>cos(A+B) = cosAcosB - sinAsinB -----------------(i)</em>
We can apply such identity to solve the given expression.
<em>Given:</em>
cos 28°cos 62°– sin 28°sin 62°
<em>Comparing the given expression with the right hand side of equation (i), we see that;</em>
A = 28°
B = 62°
<em>∴ Substitute these values into equation (i) to have;</em>
<em>⇒ cos(28°+62°) = cos28°cos62° - sin28°sin62°</em>
<em />
<em>Solve the left hand side.</em>
<em>⇒ cos(90°) = cos28°cos62° - sin28°sin62°</em>
⇒ 0 = <em>cos28°cos62° - sin28°sin62° (since cos 90° = 0)</em>
<em />
<em>Therefore, </em>
<em>cos28°cos62° - sin28°sin62° = 0</em>
<em />
<em />