Every outlet, receptacle, lamp, appliance, and other directly wired device in the house must all be connected in parallel.
-- This ensures that each receptacle and light socket is supplied the same voltage.
-- It also ensures that turning off or unplugging one device won't cut off the power to a bunch of others in the house.
Answer:
The total work on the ball is 36.25 Joules
Explanation:
There is an important principle on classical mechanics that is the work-energy principle it states that the total work on an object is equal the change on its kinetic energy, mathematically expressed as:
(1)
With W net the total work, Kf the final kinetic energy and Ki the initial kinetic energy. We're going to use this principle to calculate the total work on the baseball by the force exerted by the bat.
Kinetic energy is the energy related with the movement of an object and every classical object with velocity has some kinetic energy, it is defined as:

With m the mass of the object and v its velocity, knowing this we can use on:
In our case vf is the velocity just after the hit and vi the velocity just before the hit. For an average baseball its mass is 145g that is 0.145 kg, then

Answer:
The magnitude of the torque due to gravity if it is supported at the 28-cm mark is 0.5 N-m.
Explanation:
Given that,
Mass of the meter stick, m = 0.3 kg
Center of mass is located at its 45 cm mark.
We need to find the magnitude of the torque due to gravity if it is supported at the 28-cm mark. Torque acting on the object is given by :

or

So, the magnitude of the torque due to gravity if it is supported at the 28-cm mark is 0.5 N-m.
The characteristics of the speed of the traveling waves allows to find the result for the tension in the string is:
T = 10 N
The speed of a wave on a string is given by the relationship.
v =
Where v es the velocty, t is the tension ang μ is the lineal density.
They indicate that the length of the string is L = 2.28 m and the pulse makes 4 trips in a time of t = 0.849 s, since the speed of the pulse in the string is constant, we can use the uniform motion ratio, where the distance traveled e 4 L
v =
v =
v =
v = 10.7 m / s
Let's find the linear density of the string, which is the length of the mass divided by its mass.
μ =
μ = 8.77 10⁻² kg / m
The tension is:
T = v² μ
Let's calculate
T = 10.7² 8.77 10⁻²
T = 1 0 N
In conclusion using the characteristics of the velocity of the traveling waves we can find the result for the tension in the string is:
T = 10 N
Learn more here: brainly.com/question/12545155
The nucleus is the center of an atom.