The question ask for the percentage of the abundance of galium-69 where there is two isotopes of galium: the 69Ga and the 71Ga. The average atomic mass of gallium is 69.723 amu. So the formula would be <span>69.723amu=(%x)∗(68.926amu)+(1−%x)∗(70.025amu) and the answer to this is 1.58%</span>
Answer:
b. The splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
Explanation:
The spectrochemical series is an arrangement of ligands in increasing order of their magnitude of crystal field splitting.
Ligands that occurs towards the right in the series are called strong field ligands and they tend to cause a greater magnitude of crystal field splitting. Ligands that occur towards the left hand side in the series are called weak field ligands and they tend to cause a lesser magnitude of crystal field splitting.
Since Cl^- is a weak field ligand, it causes a lesser magnitude of d orbital splitting compared to ethylenediammine (en) which causes a greater magnitude of d orbital splitting.
Hence; the splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
2.38×10^-3
Explanation:
from the question,the we calculate the latent heat of vaporization with the difference in temperature being put into consideration
Answer:
Explanation:
A chemical formula can be defined as a notation that is used to show which element and how many is contained in a chemical compound.
Also, in chemistry, the sum of charges of the anion and the cation of any ionic compound is always equal to zero.
A chemical equation is considered to be balanced when the amount of reactants on the left is equal to the amount of products on the right.
Therefore;
[2]FeBr3 + [3]Na2S → [1]Fe2S3 + [6]NaBr
In the above chemical equation, we will balance the reactants in the chemical equation with the smallest coefficients possible;
Two (2) moles of Iron (III) Bromide reacts with two (2) moles of Sodium Sulfide to form Iron (III) Sulfide and Sodium Bromide.
The symbol : 
<h3>Further explanation
</h3>
There are two components that accompany an element, the mass number and atomic number
Atoms are composed of 3 types of basic particles (subatomic particles): <em>protons, electrons, and neutrons
</em>
The Atomic Number (Z) indicates the number of protons and electrons in an atom of an element.
Atomic number = number of protons = number of electrons ⇒ neutral number
Atomic mass is the sum of protons and neutrons
Atomic Number (Z) = Atomic mass (A) - Number of Neutrons
The element has 71 electrons and a charge of +1 , so
Number of protons = 71 + 1 = 72
Number of protons = the atomic number = 72
The element with atomic number 72 is Hafnium(Hf)
The atomic mass of Hf = 178 g/mol