Answer:
In organic chemistry, the structural formula shows the bonding and general layout of the molecule.
Explanation:
It can also help in naming the molecule, as many compounds with the same molecular formula have different structural formulas, for example cycloalkanes and alkenes, or aldehydes and ketones.
It tells us about the constituents of the compound, or in other words, the functional groups present. This enables us to predict what kind of properties the compound has and what kind of reactions it can undergo.
It can also help us determine the stereochemistry (shape and spatial orientation) of the compound. This is especially important in organic chemistry and organic chemstry, since certain important reactions will proceed if and only if a molecule with the right shape is employed.
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Answer:
Use the Bromotriflouride catalyst, BF₃
Explanation:
The BF₃ is most likely to yield less desired side products. The effect lies in the reaction mechanism.
BF₃ is a Lewis acid. Its role is to promote the ionization of the HF. This is achieved through the electrophilic mechanism. The reaction mechanism is as follows:
2 - methylpropene + H-F-BF₃ → H-F + H₃C + benzene
butylbenzene + F-BF₃ → tert-butylbenzene + H-F + BF₃ (regenerated catalyst)