Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer:
The ocean currents are too strong by the Amazon River to form deltas.
Explanation:
The Atlantic has sufficient wave and tidal energy to carry most of the Amazon's sediments out to sea, thus the Amazon does not form a true delta. The great deltas of the world are all in relatively protected bodies of water, while the Amazon empties directly into the turbulent Atlantic.
Answer:
hello, i hope this helps.
Explanation:
1 - group
2 - period
3 - periodic table
4 - family
5 - octet rule
6 - valence electrons
Answer:
hypochlorite ion
Explanation:
The hypochlorous acid, HClO, is a weak acid with Ka = 1.36x10⁻³, when this acid is in solution with its conjugate base, ClO⁻ (From sodium hypochlorite, NaClO) a buffer is produced. When a strong acid as HCl is added, the reaction that occurs is:
HCl + ClO⁻ → HClO + Cl⁻.
Where more hypochlorous acid is produced.
That means, the HCl reacts with the hypochlorite ion present in solution