Answer:
D). 
Explanation:
As we know that temperature scale is linear so we will have

now we have

so the relation between two scales is given as

now we know that in kelvin scale the absolute temperature is 600 K
so now we have

so correct answer is
D). 
Answer:
At its most natural frequency. ... A forceful voice, exquisite control of frequency, and oscillating
Since the temperature of the gas remains constant in the process, we can use Boyle's law, which states that for a gas transformation at constant temperature, the product between the gas pressure and its volume is constant:

which can also be rewritten as

(1)
where the labels 1 and 2 mark the initial and final conditions of the gas.
In our problem,

,

and

, so the final pressure of the gas can be found by re-arranging eq.(1):

Therefore the correct answer is
<span>1. 0.75 atm</span>
It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
Answer:
Required rate of return = 18.5 %
Explanation:
given,
rate of inflection = 4 %
risk free rate = 3 %
market risk premium = 5 %
firm has a beta = 2.30
rate of return has averaged 15.0% over the last 5 years
now,
Nominal risk free rate = risk free rate + inflation
= 3% + 4%
= 7%
Required rate of return = Nominal risk free rate + β (RPM)
= 7% + 2.3 x 5.0%
Required rate of return = 18.5 %