(a) As the car is moving with constant velocity, it means the rate change of velocity does not change, therefore the average acceleration of the car is zero.
Thus, there is no acceleration, when velocity is constant.
(b) Average acceleration,

Here, v is final velocity and u is the initial velocity and
is the time interval.
As twelve seconds later, the car is halfway around the track and traveling in the opposite direction with the same speed, therefore

Thus, the average acceleration of the car is
in the direction to the left.
Missing question:
"<span>What is his velocity? Please answer using two sig figs in m/s."
Solution
The relationship between velocity (v), space (S) and time (t) is
</span>

<span>The space covered by Harry is
</span>

<span>and so the velocity is
</span>

<span>
</span>
Answer:
v = 10 [m/s].
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Vector A is of magnitude 12 m and it makes an angle of 37 degree with Y axis
So here we can say that




Similarly we have




So here we have

option A is correct