Answer:
a
Solid Wire
Stranded Wire 
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is 
The radius of each strand is 
The current density in both wires is 
Considering the first wire
The cross-sectional area of the first wire is

= >
= >
Generally the current in the first wire is

=> 
=>
Considering the second wire wire
The cross-sectional area of the second wire is

=> 
=> 
Generally the current is

=> 
=> 
Considering question two
From the question we are told that
Resistivity is 
The length of each wire is 
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
Answer:
Explanation:
Given
Weight of person
At highest point Magnitude of the normal force
net force at highest point
where
centripetal force
Normal Force
Negative sign shows force is in upward direction
At bottom point centripetal force is towards the bottom
Answer:
B splits and goes through two components
Explanation:
- A series circuit is a circuit in which the components are all connected along the same branch: as a result, the current flowing through the components is the same, while the sum of the potential differences across each component is equal to the emf of the battery
- A parallel circuit is a circuit consisting of separate branches, so that each branch has a potential difference equal to the emf of the battery. As a result, in such a circuit the current in the circuit splits and goes through the different branches/components.
So, the correct answer is
B splits and goes through two components
Answer:
Newton's Third Law
Explanation:
Newton's third law
Newton's third law: “for every action, there is an equal and opposite reaction.” This is where you get the bounce. When you push down on the trampoline (or fall downward onto the trampoline bed), Newton's third law says that an equal and opposite reaction pushes back.
:)
Answer:
Value of electric field along the axis and equitorial axis
and
respectively.
Explanation:
Given :
Distance between charges , 
Magnitude of charges , 
Dipole moment , 
Case A) (x,y) = (12.0 cm, 0 cm) :
Electric field of dipole in its axis ,

Putting all values and 
We get , 
Case B) (x,y) = (0 cm, 12.0 cm) :
Electric field of dipole on equitorial axis ,

Putting all values and
We get , 
Hence , this is the required solution.