<span>The longest wavelength within the visible spectrum is the red
light. The answer is letter C. It is called visible light because it is the
only light that can be seen by the human eye. Red light is the longest
wavelength around 620 to 750 nanometer. It is followed by orange which has a
wavelength of 590 t 620 nanometer. And then blue which has a wavelength of 450
to 495 nanometer. And the shortest wavelength is violet which has a wavelength
of 380 to 459 nanometer. </span>
Answer:
71.85 m/s
Explanation:
Given the following :
Length of skid marks left by jaguar (s) = 290 m
Skidding Acceleration (a) = - 8.90m/s²
Final velocity of jaguar (v) = 0
Speed of Jaguar before it Began to skid =?
Hence, initial speed of jaguar could be obtained using the formula :
v² = u² + 2as
Where
v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar
0² = u² + (2 × (-8.90) × 290)
0 = u² + (-5,162)
u² = 5162
Take the square root of both sides
u = √5162
u = 71.847 m/s
u = 71.85m/s
Answer:
c = 1 / √(ε₀*μ₀)
Explanation:
The speed of the electromagnetic wave in free space is given in terms of the permeability and the permittivity of free space by
c = 1 / √(ε₀*μ₀)
where the permeability of free space (μ₀) is a physical constant used often in electromagnetism and ε₀ is the permittivity of free space (a physical constant).
A toaster needs a 110-volt outlet because it doesn’t need
too much electricity. Electricity can be
converted to heat, and toaster only needs to be heated and nothing else that
requires extra electricity while clothes dyer requires higher voltage because
it needs more effort and electricity in order to do its function.
To develop this problem it is necessary to apply the concepts related to a magnetic field in spheres.
By definition we know that the magnetic field in a sphere can be described as

Where,
a = Radius
z = Distance to the magnetic field
I = Current
Permeability constant in free space
Our values are given as
diameter of the sphere then,

Thus z = a



Re-arrange to find I,



Therefore the current at the pole of this sphere is 