Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.
Sdhdmzir d sjdurkshrjeidnrjddneuxneixfnsidnrjxcbfnxudnx
At any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
<h3>What is the meaning of physical evidence?</h3>
In evidence law, physical evidence (also called real evidence or material evidence) is any material object that plays some role in the matter that gave rise to the litigation, introduced as evidence in a judicial proceeding (such as a trial) to prove a fact in issue based on the object's physical characteristics.
The two types of evidence at crime scenes:
Biological evidence (e.g., blood, body fluids, hair and other tissues)
Latent print evidence (e.g., fingerprints, palm prints, footprints)
The biggest impediment to an investigation is the removal or loss of a piece of evidence from the scene of a crime.
Hence, at any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
Learn more about the physical evidence here:
brainly.com/question/13505766
#SPJ1
1. its must be B and 2. must be C
Answer:
The intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Explanation:
Given;
intensity of the sound level, dB = 60 dB
The intensity of the sound in W/m² is calculated as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C)
where;
I₀ is threshold of hearing = 1 x 10⁻¹² W/m²
I is intensity of the sound in W/m²
Substitute the given values and for I;
![dB = 10 Log[\frac{I}{I_o} ]\\\\60 = 10 Log[\frac{I}{I_o} ]\\\\6 = Log[\frac{I}{I_o} ]\\\\10^6 = \frac{I}{I_o} \\\\I = 10^6 \ \times \ I_o\\\\I = 10^6 \ \times \ 1^{-12} \ W/m^2 \\\\I = 1\ \times \ 10^{-6} \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C60%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C6%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C10%5E6%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%20I_o%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%201%5E%7B-12%7D%20%5C%20W%2Fm%5E2%20%5C%5C%5C%5CI%20%3D%201%5C%20%5Ctimes%20%5C%2010%5E%7B-6%7D%20%5C%20W%2Fm%5E2)
Therefore, the intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².