Mass of first car = Initial mass (Mi) = 2 kg
Initial velocity (Vi) = 2 m/s
Mass of both cars together = Final mass (Mf) = 2 + 3 kg = 5 kg
Final Velocity (Vf) = ?
Applying law of conservation of momentum,
Mi x Vi = Mf x Vf
2 x 2 = 5 x Vf
Vf = 4/5 = 0.8 m/s
Answer:
The specific heat of aluminum is greater.
Explanation:
It lost the most heat.
The control setup in this experiment would be one tank that does not contain any of the additives. Since the tanks with the gasoline additives would need to be compared with a tank that is not affected by the results of these additives.
Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
Answer:
The work done by the bird is 0.762 J
Explanation:
Given;
force applied by the bird, f = 10 N
distance the bird moved the worm, d = 3 inches = 0.0762 m
The work done by the bird is given by;
W = F x d
where;
W is the work done by the bird
d is the distance the bird moved the load
Substitute the given values and estimate the work done by the bird;
W = 10 x 0.0762
W = 0.762 J
Therefore, the work done by the bird is 0.762 J