Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):
So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.
W = 3.12 J
Hope this helps!
c.charge due to the reaction process between the two
Answer:
The answer is 3.48 seconds
Explanation:
The kinematic equation
y= y0+V0*t+1/2*a*(t*t)
-50=0+(0)t+1/2(-9.8)*(t*t)
t=3.194 seconds
During ribbons ball,
x=x0+ Vt+1/2*a*(t*t)
x= 0+(15)*(3.194)+1/2*(0)* (3.194*3.194)
x= 47.9157m
So, distance (D) = 100-47.9157= 52.084m
52.084m=0+15(t)+1/2*(0)(t*t)
t=52.084/15=3.472286= 3.48seconds