Density of a liquid determines how it will layer (heaviest to lightest). If the liquid is least dense it will float to the bottom. Layers will remain separated because each liquid is actually floating on top of the more dense liquid beneath it.
The volume of the gas is 180.26 L, if there are 63.5 mol of an ideal gas at 9.11 atm at 42.80 °C.
Applying the ideal gas law PV= nRT
After rearranging the aforementioned expression, the volume might then be found as: V= n R T/ P.
Consequently, V= 63.5 mol, 0.0821, 315 K, and 9.11 atm equal 180.26 L.
<h3>How is the ideal gas equation defined?</h3>
The ideal gas equation is PV = nRT. In this equation, P denotes the ideal gas's pressure, V its volume, n its total amount, expressed in moles, and R its resistance for the universal gas constant, and T for temperature.
To know more about Ideal gas, visit-
brainly.com/question/8711877
#SPJ13
<span>The fuel Mixture is pressurized</span>
Ok I’m figuring this one out
A loss of negatively-charged electrons corresponds to an increase in oxidation number, while a gain of electrons corresponds to a decrease in oxidation number. Therefore, the element or ion that is oxidized undergoes an increase in oxidation number.
Hope this helped