1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
3 years ago
8

The electron affinity of thulium has been measured by a technique known as laser photodetachment electron spectroscopy. In this

technique, a gaseous beam of the anions of an element is bombarded with photons from a laser. Electrons from the anion are then ejected and their energies are detected. The incident radiation had a wavelength of 1064 nm, and the ejected electrons were found to have an energy of 0.137 eV. The electron affinity is the difference in energy between the incident photons and the energy of the ejected electrons. Determine the electron affinity of thulium in units of electron volts per atom.
Physics
1 answer:
antoniya [11.8K]3 years ago
3 0

Answer:

ΔE = 1.031 eV

Explanation:

For this exercise let's calculate the energy of the photons using Planck's equation

          E = h f

wavelength and frequency are related

         c = λ f

         f = c /λ

let's substitute

         E = h c /λ

let's calculate

         E = 6.63 10⁻³⁴ 3 10⁸/1064 10⁻⁹

         E = 1.869 10⁻¹⁹ J

let's reduce to eV

         E = 1.869 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)

        E = 1.168 eV

therefore the electron affinity is

         ΔE = E - 0.137

         ΔE = 1.168 - 0.137

         ΔE = 1.031 eV

You might be interested in
If sound travels at 5600 m/s through a steel rod,what is the wavelength,given a wave frequency of 2480 Hz
Feliz [49]

Answer:

wavelength = 5600/2480= 2.25m

6 0
3 years ago
How did planck find the correct curve for the specturm of light emitted by a hot obkect?
Neko [114]

Planck find the correct curve for the specturm of light emitted by a hot object by vibrational energies of the atomic resonators were quantized.

<h3>Briefing :</h3>
  • The energy density of a black body between λ and λ + dλ is the energy E=hc/λ of a mode times the density of states for photons, times the probability that the mode is occupied. 
  • This is Planck's renowned equation for a black body's energy density.
  • According to this, electromagnetic radiation from heated bodies emits in discrete energy units or quanta, the size of which depends on a fundamental physical constant (Planck's constant). The basis of infrared imaging is the correlation between spectral emissivity, temperature, and radiant energy, which is made possible by Planck's equation.

Learn more about the Planck's constant with the help of the given link:

brainly.com/question/27389304

#SPJ4

3 0
1 year ago
cooling down after a workout allows the oxygen to continuing moving through the body and keeps the muscles from tightening up to
Anvisha [2.4K]
I think the answer is true
4 0
4 years ago
Read 2 more answers
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
The length of a simple pendulum is 0.81 mand the mass of the particle (the "bob") at the end of the cable is0.23 kg. The pendulu
Gemiola [76]

Answer:

\displaystyle w=3.478\ rad/sec

M=0.0182\ J

v=0.398\ m/s

Explanation:

<u>Simple Pendulum</u>

It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).

(a) The angular frequency of the motion is computed as

\displaystyle w=\sqrt{\frac{g}{L}}

We have the length of the pendulum is L=0.81 meters, then we have

\displaystyle w=\sqrt{\frac{9.8}{0.81}}

\displaystyle w=3.478\ rad/sec

(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

U=mgh

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

H+Y=L

And

H=L\ cos\alpha

Solving for Y

Y=L(1-cos\alpha )

Since\ \alpha=8.1^o, L=0.81\ m

Y=0.0081\ m

The potential energy is

U=mgh=0.23\ kg(9.8\ m/s^2)(0.0081\ m)

U=0.0182\ J

The mechanical energy is, then

M=K+U=0+U=U

M=0.0182\ J

(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

\displaystyle K=\frac{mv^2}{2}

Equating to the mechanical energy of the system (M)

\displaystyle \frac{mv^2}{2}=0.0182

Solving for v

\displaystyle v=\sqrt{\frac{(2)(0.0182)}{0.23}}

v=0.398\ m/s

4 0
3 years ago
Other questions:
  • You serve a volley ball with a mass of 2.1 kg. The ball leaves your hand with a speed of 30 m/s. The ball has_______ energy. Can
    13·1 answer
  • PHYSICAL SCIENCE : What are the advantages and disadvantages of using nuclear energy to generate electricity?
    7·1 answer
  • What is a non example of atmosphere
    12·2 answers
  • What is electricity?
    5·1 answer
  • A 4-N object object swings on the end of a string as a simple pendulum. At the bottom of the swing, the tension in the string is
    10·1 answer
  • What energy transformation occurs during the combustion of coal in a power plant?
    7·2 answers
  • What is air masses? And 5 effect of it​
    14·1 answer
  • What happens when you pay bills using a computer
    7·2 answers
  • You kick a soccer ball with a mass of 2 kg. The ball leaves your foot with a speed of 30 m/s. How much kinetic energy does the b
    9·2 answers
  • Approximately what is the smallest detail observable with a microscope that uses ultraviolet light of frequency 1. 72 x 1015 hz?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!