Answer:
t = 96.1 nm
Explanation:
For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength
now we know that the path difference of two reflected light from thin liquid layer is given as

here we know that

t = thickness of layer
N = 0 (for minimum thickness of layer)

now we have


I changed my undershorts. The elastic on the old ones I put on that day was deteriorated, and it completely failed when I dripped lab coffee on it, causing falldown.
The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N
From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.
<h3>What is velocity?</h3>
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity.
it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.
Given data:
V(Final velocity)=? (m/sec)
h(height)= 6.0 m
u(Initial velocity)=0 m/sec
g(gravitational acceleration)=9.81 m/s²
Newton's third equation of motion:

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
#SPJ1