Answer:
(a) 110 rev/ min
(b) 5/6
Explanation:
As per the conservation of linear momentum,
L ( initial ) = L ( final )
I' ω' = ( I' + I'' ) ωf
I' is the rotational inertia of first wheel and I'' is the rotational inertia of second wheel which is at rest.
(a)
So, ωf = I' ω' / ( I' + I'' )
As I'' = 5I'
ωf = I' ω' / ( I' + 5I' )
ωf = ω'/ 6
now we know ω' = 660 rev / min
therefore ωf = 660/6
= 110 rev/ min
(b)
Initial kinetic energy will be K'
K' = I'ω'² / 2
and final K.E. will be K'' = ( I' + I'' )ωf² / 2
K'' = ( I' + 5I' ) (ω'/ 6)²/ 2
K'' = 6I' ω'²/72
K'' = I' ω'²/ 12
therefore the fraction lost is
ΔK/K' = ( K' - K'' ) / K'
= {( I'ω'² / 2) - (I' ω'²/ 12)} / ( I'ω'² / 2)
= 5/6
Answer:
76.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 330 m / sec
wavelength ( λ ) = 4.3 m
We have to calculate Frequency ( f ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 330 / 4.3 Hz
= > f = 3300 / 43 Hz
= > f = 76.74 Hz
Hence, frequency of sound is 76.74 Hz.
Answer:
Explanation:
Given
Cannon is fired with a velocity of 
Using Equation of motion

where




after time 



So after 3.3 s cannon ball is at a height of 185.89 m
Answer: The younger elliptical and lenticular galaxies had results similar to spiral galaxies like the Milky Way. The researchers found that the older galaxies have a larger fraction of low-mass stars than their younger counterparts.
Explanation:
Answer: Solution W and Y solution have more solubility than X and Z
Solutions are homogeneous mixtures of two or more components. By uniform mix we mean that its structure and properties are the same in the whole mix. Generally, the component which is present in the largest quantity is known as solvent. Solvent determines the physical condition in which the solution exists. In addition to the solvent, one or more component present in the solution is called solutes. In this unit we will only consider binary solutions (i.e., with two components)
The structure of the solution can be described by expressing its concentration. The latter can either be expressed qualitatively or quantitatively. For example, in qualitatively we can say that the solution is diluted (i.e., relatively small amounts of solubility) or it is concentrated (i.e., relatively rarely sighs). But in real life such details may be very confusing and thus require a quantitative description of the solution. There are several ways that we can quantitatively describe the concentration of solutions. (i) Mass Percentage (W / W): The mass percentage of a component of the solution is defined as: mass of the component = mass of the component in the solution = 100 Total mass of the solution .For example, if by mass A solution is described by 10% glucose in water, it means that 10 grams of glucose dissolved in 90 grams of water, resulting in 100 grams of solution. The concentration described by a large percentage of the population is usually used in industrial chemical applications. For example, the commercial bleaching solution contains 3.62 mass percentages of sodium hypochlorite in water. (ii) Volume Percentage (V / V): Volume Percentage is defined as: Total Volume of Component Volume 100 (component) Volume% of Component
Explanation: