Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.
The correct answer is (A). The speed of light would increase to a speed larger than the maximum speed of light in vacuum.
The index of refraction is the ratio of speed of light in vacuum to the speed of light in a medium.
n=C/V
here, n is the index of refraction, c the speed of light in vacuum, v is speed of light in any medium.
Now if the value of index of refraction is less than one, than the value of speed of light would be greater than the speed of light in the vacuum.
Answer:
The average current is 19.567 A
Solution:
As per the question:
Charge, Q = 
Time, t = 
Now,
We know that current is constituted by the rate of transfer of the charge per unit time. Thus we can write:
I =
(1)
Now, the charge that was transferred is 86 % of the original value.
Therefore,
We replace Q by 0.86Q in eqn (1):
I = 
Answer:
Objects want to keep doing the same thing is a way of stating Newtons First Law.
Answer:
The correct option is;
- 4x
Explanation:
From the inverse square law, as the distance from the source of a physical quantity increases, the intensity of the source is spread over an area proportional to the square of the distance of the object from the source
The inverse square law can be presented as follows;

As the distance, r, increases, the surface it covers also increases by the power of 2
Therefore, where the distance increases from r to 2·r, we have;
When, I, remain constant

The surface increases to 4·S by the inverse square law
Therefore, the correct option is 4 × x.