1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
13

How does inertia affect a person who is not wearing a seatbelt during a collision?

Physics
2 answers:
ELEN [110]3 years ago
7 0

A person who is not wearing a seatbelt during a collision will be thrown forward because it maintains forward motion

<h3>Further explanation </h3>

In Newton's law, it is stated that if the resultant force acting on an object of magnitude is zero,  it can be formulated :

\large{\boxed{\bold{\Sigma F = 0}}}

then the object tends to defend itself from its state. So for objects in a state of movement, objects tend to move forever. Likewise, for objects in a state of rest, they tend to remain forever. The tendency of objects like this is called<em> inertia </em>

The size of inertia is proportional to mass, the greater the mass of the object, the greater the inertia of the object.

In objects with mass m that move translatively, the object will maintain its linear velocity

When we are in a vehicle that moves forward, then we will still maintain a state of forwarding motion. If our vehicle stops suddenly, then we keep moving forward so we will be pushed forward. From this point, the use of a safety belt serves to hold back our movements so that there are no fatal accidents or collisions.

<h3>Learn more </h3>

Newton's law of inertia

brainly.com/question/1412777

example of Newton's First Law of inertia

brainly.com/question/1090504

law of motion

brainly.com/question/75210

Keywords: inertia, Newton's First Law

kari74 [83]3 years ago
3 0

<u><em>The person not wearing the seat-belt during a collision may hit the dashboard of the car very hard and this injury might be fatal.</em></u>

Explanation:

The inertia of a body is a property contained by the body by virtue of its mass. Higher the mass of a body, higher will be the inertia.

According to the Newton's first law of motion i.e. law of Inertia, a body continues to be in its state of rest or motion until and unless an external force acts on the body to change its state.

When a car is moving on a road, the car is in motion and the body of the person in the car is also in the motion along with the car. Now if the car faces any collision, the car will suddenly come to rest.

But the body of the person sitting in the car continues to be in motion as there is no external force acting on the body. If the person is not wearing the seat-belt, the body moves forward and the person may hit the dashboard very hard.

The seat-belt stops the person's body to move ahead and hit the dashboard. So, the seat-belt prevents the person from injury by stopping the body.

Thus, <u><em>The person not wearing the seat-belt during a collision may hit the dashboard of the car very hard and this injury might be fatal.</em></u>

<u><em></em></u>

Learn More:

1. The component of a lever brainly.com/question/1073452  

2. The kinetic energy of a body depends on brainly.com/question/137098

3. How long to walk 2000 miles brainly.com/question/3785992

Answer Details:

Grade: High School

Subject: Physics

Chapter: Laws of Motion

Keywords:

inertia, law of motion, newton's law, seat-belt, collision, wearing, dashboard, injury, external force, rest, motion.

You might be interested in
A package is dropped from an air balloon two times. In the first trial the distance between the balloon and the surface is Hand
enyata [817]

Answer:

<em>The final speed of the second package is twice as much as the final speed of the first package.</em>

Explanation:

<u>Free Fall Motion</u>

If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

v=gt

And the distance traveled downwards is:

\displaystyle y=\frac{gt^2}{2}

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

\displaystyle t=\sqrt{\frac{2y}{g}}

Replacing into the first equation:

\displaystyle v=g\sqrt{\frac{2y}{g}}

Rationalizing:

\displaystyle v=\sqrt{2gy}

Let's call v1 the final speed of the package dropped from a height H. Thus:

\displaystyle v_1=\sqrt{2gH}

Let v2 be the final speed of the package dropped from a height 4H. Thus:

\displaystyle v_2=\sqrt{2g(4H)}

Taking out the square root of 4:

\displaystyle v_2=2\sqrt{2gH}

Dividing v2/v1 we can compare the final speeds:

\displaystyle v_2/v_1=\frac{2\sqrt{2gH}}{\sqrt{2gH}}

Simplifying:

\displaystyle v_2/v_1=2

The final speed of the second package is twice as much as the final speed of the first package.

5 0
3 years ago
12. Which of the following statements about
aliya0001 [1]
A seems to be correct
8 0
2 years ago
Write the nuclear equation for the release of the beta particles by Pb-210.
Liula [17]
210 Pb ---> -ie + 210 B:
84                       8.3
3 0
3 years ago
If your apparatus were to be dropped from a mile above the ground, describe the forces acting upon your apparatus as it fell. Ho
kvv77 [185]

Answer:

An accelerometer is a tool that measures proper acceleration.[1] Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame;[2] this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards[3] (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.81 m/s2) will measure zero.

Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight.

When two or more accelerometers are coordinated with one another, they can measure differences in proper acceleration, particularly gravity, over their separation in space—that is, the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity is a weak effect and depends on the local density of the Earth, which is quite variable.

Single- and multi-axis accelerometers can detect both the magnitude and the direction of the proper acceleration, as a vector quantity, and can be used to sense orientation (because the direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium (a case in which the proper acceleration changes, increasing from zero). Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.

Explanation:

hope this helps !!!!

7 0
2 years ago
Kim is ice-skating going 4.6 m/s. What is her velocity after 10 seconds ?
MArishka [77]

This is a uniform rectilinear motion (MRU) exercise.

To start solving this exercise, we obtain the following data:

<h3><u>Data:</u></h3>
  • v = 4.6 m/s
  • d = ¿?
  • t = 10 sec

To calculate distance, speed is multiplied by time.

We apply the following formula: d = v * t.

We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:

\bf{d=4.6\dfrac{m}{\not{s}}*10\not{s} }

\bf{d=46 \ m}

Therefore, the speed at 10 seconds is 46 meters.

\huge \red{\boxed{\green{\boxed{\boldsymbol{\purple{Pisces04}}}}}}

6 0
2 years ago
Other questions:
  • Which term describes when situations, events, or people make demands on your body and mind
    15·2 answers
  • A steel casting weighing 2 kg has an initial temperature of 500°c; 25 kg of water initially at 25°c is contained in a perfectly
    12·2 answers
  • A 50 kg car is pushed so that it speeds up from 20 m/s to 50 m/s in 3 seconds. What is the force acting on the car?
    9·1 answer
  • 1. Which cell organelle is popularly known as power house of the cell. Why?
    10·1 answer
  • A uniform disk with a mass of 5.0 kg and diameter 30 cm rotates on a frictionless fixed axis through its center and perpendicula
    14·1 answer
  • Which statement best defines inertia?
    14·2 answers
  • List the following types of electromagnetic radiation in order of increasing wavelength:(i) the gamma rays produced by a radioac
    13·1 answer
  • The width of a particular microwave oven is exactly right to support a standing-wave mode. Measurements of the temperature acros
    10·1 answer
  • What is the momentum of a 1550kg car that is traveling 38.0 m/s?
    5·1 answer
  • Define volume with example​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!