Answer:
The regression line is not a good model because there is a pattern in the residual plot.
Step-by-step explanation:
Given is a residual plot for a data set
The residual plot shows scatter plot of x and y
The plotting of points show that there is not likely to be a linear trend of relation between the two variables. It is more likely to be parabolic or exponential.
Hence the regression line cannot be a good model as they do not approach 0.
Also there is not a pattern of linear trend.
D) The regression line is not a good model because there is a pattern in the residual plot.
For this case we have that by definition, the equation of the line in the slope-intersection form is given by:

Where:
m: It is the slope of the line
b: It is the cut-off point with the y axis
We have the following points through which the line passes:

We find the slope of the line:

Thus, the equation of the line is of the form:

We substitute one of the points and find b:

Finally, the equation is:

Answer:

Answer:
Question 4: -11
Question 5: -7
Step-by-step explanation:
Four
Every triangle has 180 degrees.
So all three angles add to 180
<em><u>Equation</u></em>
60 + 80 + x + 51 = 180
<em><u>Solution</u></em>
Combine the like terms on the left. This is the first time I've seen x be a negative value. Almost all of the time it isn't, which should make you wonder.
191 + x = 180
Subtract 191 from both sides.
191 - 191 + x = 180 - 191
x = - 11
Five
If a triangle is a right triangle and one of the angles is 45, then so is the other one.
<em><u>Proof</u></em>
a + 45 + 90 = 180 Combine like terms on the left
a + 135 = 180 Subtract 135 on both sides.
a + 135-135=180-135 Combine the like terms
a = 45
<em><u>Statement</u></em>
That means 52 + x = 45 and here is another negative answer. Subtract 52 from both sides
52 - 52 + x = 45 - 52 Combine like terms.
x = - 7
The perimeter "P" is equal to the length of the base of one triangle multiplied by the "n" number of triangles in the figure plus two times the length of another side. The equation for the perimeter is P = 5n + 14.
We are given triangles. The triangles are arranged in a certain pattern. The length of the base of each triangle is equal to 5 units. The length of the other two sides is 7 units each. We conclude that all the triangles are isosceles. We need to find the relationship between the number of triangles and the perimeter of the figure. Let the perimeter of the figure having "n" number of triangles be represented by the variable "P".
P(1) = 14 + 5(1)
P(2) = 14 + 5(2)
P(3) = 14 + 5(3)
We can see and continue the pattern. The relationship between the perimeter and the number of triangles is given below.
P(n) = 14 + 5n
To learn more about perimeter, visit :
brainly.com/question/6465134
#SPJ1