-- The long line and short line close together at the left side
of the diagram represent a single-cell battery.
It's the only one in this diagram.
It's a device that stores chemical energy and delivers it on demand.
-- The zig-zag lines with circles around them represent light bulbs.
There are three of them in this diagram.
They are devices used to produce light by dissipating electrical energy.
-- The zig-zag lines without circles, at the top of the diagram,
represent resistors.
There are two of them in this diagram.
They are devices used to change or control electrical parameters
within a circuit by dissipating electrical energy.
-- The short straight line between two small circles at the bottom
of the diagram represents a switch.
There is only one switch in this circuit.
It's a device used to easily and quickly start or stop the flow of current
past a certain point in a circuit.
In this circuit ...
-- When the switch is closed (as drawn), the light bulb nearest the battery
glows brightest, the light bulb in the middle glows less bright, and the light
bulb on the right side glows dimmest of all.
-- When the switch is open, the light bulb nearest the battery glows, and
neither of the other two light bulbs glows at all.
0.5mv^2
0.5 times 40 times 3^2
The kinetic energy is 180
Answer:
Explanation:
This problem is related to vertical motion, and the equation that models it is:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Isolating
and taking into account
:
(2)
(3)
(4) This is the acceleration due gravity in Planet X
The statement that describes the energy changes associated with evaporation and boiling is that atoms gain energy during evaporation and boiling.
<h3>What is evaporation?</h3>
Evaporation is defined as process by which a solution changes from its liquid state to gaseous state.
Boiling is defined as the heating of water to a point that the vapor pressure is equal to the pressure of the gas above it.
In both phase transition stages, the molecules gain enough energy to change its state to another state.
Learn more about boiling here:
brainly.com/question/15284968
#SPJ1