2ω is the resistance of the second wire if the resistance of the first is 4ω if two wires have the same length, but the second has twice the diameter of the first.
R= 4ω.
R = ρl/A
2d=r
R2=2ω
Resistance is the capacity of a conductor to obstruct the passage of an electric current through it. It is controlled by the interaction of the applied voltage and the electric current passing through it.
Conductors have very little resistance, whereas insulators have a significant amount of resistance. The resistance increases as the current flow decreases. Resistance is influenced by the properties and dimensions of the material (area of cross section)
To know more about resistance visit : brainly.com/question/14547003
#SPJ4
Apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 180kPa, T = -8.0°C = 265.15K
Final P and T values:
P = 245kPa, T = ?
Set the initial and final P/T values equal to each other and solve for the final T:
180/265.15 = 245/T
T = 361K
Answer:
Explanation:
For fundamental frequency in a vibrating string , the formula is
n = 1 / 2L x √ ( T /m₁ )
n is frequency , L is length , T is tension and m₁ is mass per unit length .
For first string ,
293 = 1 / 2L x √ ( 49 N /m₁ )
For second string , let mass per unit length be m₂ .
196 = 1 / 2L x √ ( 49 N /m₂ ) ------ ( 1 )
To bring its frequency back to previous one let tension be T
293 = 1 / 2L x √ ( T /m₂ ) ------- ( 2 )
Dividing
293 / 196 = √ ( T /49 )
1.4948 = √ ( T /49 )
2.2344 = T /49
T = 109.48 N .
Answer: 1.Spectroscopes breaks the light from a single material into its component colors the way a prism splits white light into a rainbow. It records this spectrum, which allows scientists to analyze the light and discover properties of the material interacting with it.
2.Optical Telescopes The now-indispensable optical telescope instrument was pioneered by Galileo Galilei in 1609, although others had created similar tools by then
2.A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance, luminosity, and relative motion using Doppler shift measurements.
3.Stars form from an accumulation of gas and dust, which collapses due to gravity and starts to form stars. The process of star formation takes around a million years from the time the initial gas cloud starts to collapse until the star is created and shines like the Sun.Once the pressure and the temperature inside get high enough for nuclear fusion to ignite, it creates a star.
Explanation: