Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Answer:
B.Add acid to water,not water to acid
Explanation:
they should not be mixed
Half-life is defined as the amount of time it takes a given quantity to decrease to half of its initial value. The equation to describe the decay is
Nt=N0(1/2)

where N0 is the initial quantity, Nt is the remaining quantity after time t, t1/2 is the half-time. So work out the equation, t1/2 = t (-ln2)/ln(Nt/N0) = 11.5*(-ln2)/ln(12.5/100) = 3.83 days
The correct answer is <span>ball-and-stick model I just take it</span>
Answer:
If it takes more energy to break the original bonds than is released when the new bonds are formed, then the net energy of the reaction is negative. This means that energy must be pumped into the system to keep the reaction going. Such reactions are known as endothermic.
Explanation: