Answer: The number to the left of AC should be 6.
Explanation: The balanced chemical reaction is one in which the number of atoms of each element on the reactant side must be equal to the number of atoms on product side.
The given equation
is unbalanced as the atoms on the reactant side are not same as number of atoms on product side. This equation is called as skeletal equation.
The balanced chemical equation is :

Thus the number to the left of AC is 6.
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Answer: The concentration of the OH-, CB = 0.473 M.
Explanation:
The balanced equation of reaction is:
2HCl + Ca(OH)2 ===> CaCl2 + 2H2O
Using titration equation of formula
CAVA/CBVB = NA/NB
Where NA is the number of mole of acid = 2 (from the balanced equation of reaction)
NB is the number of mole of base = 1 (from the balanced equation of reaction)
CA is the concentration of acid = 1M
CB is the concentration of base = to be calculated
VA is the volume of acid = 23.65 ml
VB is the volume of base = 25mL
Substituting
1×23.65/CB×25 = 2/1
Therefore CB =1×23.65×1/25×2
CB = 0.473 M.