Larger gases produces more spectral lines than the smaller gases because they have more orbitals in their atoms.
Hydrogen has only one orbital in which an electron orbits. At the excited state, that is, when the electron gains energy, the number of energy level it can transcend is very few. For larger elements, they have more orbitals and when excited, they can move from the ground state to other energy levels at which they produce various unique spectral lines.
You need to do something like that your self so sorry can help.
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
80L
Explanation:
V1/T1 = V2/T2
V2 = V1 T2/T1
T1 = 300K
V1 = 60L
T2 = 400K
V2 = ?
V2 = V1 T2/T1
V2 = (60L)(400K) / (300K)
V2 = 80L
Complete question is;
Which of the following object would take you the greatest amount of force to accelerate.
A) a soccer ball with a mass of 0.5 kg
B) a refrigerator with a mass of 200 kg, C) a bike with a mass of 25 kg
D) a car with a mass of 5,000 kg,
Answer:
D) a car with a mass of 5,000 kg
Explanation:
Formula for force is;
F = ma
Where;
F is force
m is mass
a is acceleration
Now, Force is directly proportional to the acceleration and mass.
Thus, the higher the mass, the greater the force.
Thus, the object that will require the most force is the one that has the highest mass.
Looking at the options, the one with the highest mass is option D.