Answer:
0.67
Step-by-step explanation:
2.01 is the total for three oranges.
the math would be 2.01 ÷ 3 = 0.67
to check your answer:
if one orange equals 0.67 and you have three of them
the math would be 3 × 0.67 = 2.01
<span>here we can use Pythogoras' theorem.
in right angled triangles the square of the hypotenuse is equal to the sum of the squares of the other 2 sides.
hypotenuse is 19 cm. One side is 13 cm and we need to find the length of the third side.
19</span>²<span> = 13</span>²<span> + X</span>²<span>
X - length of the third side
361 = 169 + X</span>²<span>
X</span>²<span> = 361 - 169
X</span>²<span> = 192
X = 13.85 the length of third side rounded off to the nearest tenth is 13.9 cm</span>
11: B
12: C
They are both supplementary angles meaning they add to 180 degrees
Answer:
Step-by-step explanation:
(a)
Consider the following:
![A=\frac{\pi}{4}=45°\\\\B=\frac{\pi}{3}=60°](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%3D45%C2%B0%5C%5C%5C%5CB%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%3D60%C2%B0)
Use sine rule,
![\frac{b}{a}=\frac{\sinB}{\sin A} \\\\=\frac{\sin{\frac{\pi}{3}} }{\sin{\frac{\pi}{4}}}\\\\=\frac{[\frac{\sqrt{3}}{2}]}{\frac{1}{\sqrt{2}}}\\\\=\frac{\sqrt{2}}{2}\times \frac{\sqrt{2}}{1}=\sqrt{\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5CsinB%7D%7B%5Csin%20A%7D%0A%5C%5C%5C%5C%3D%5Cfrac%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%0A%7D%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5D%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B1%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D)
Again consider,
![\frac{b}{a}=\frac{\sin{B}}{\sin{A}} \\\\\sin{B}=\frac{b}{a}\times \sin{A}\\\\\sin{B}=\sqrt{\frac{3}{2}}\sin {A}\\\\B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5Csin%7BB%7D%7D%7B%5Csin%7BA%7D%7D%0A%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Cfrac%7Bb%7D%7Ba%7D%5Ctimes%20%5Csin%7BA%7D%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%20%7BA%7D%5C%5C%5C%5CB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Thus, the angle B is function of A is, ![B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=B%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Now find ![\frac{dB}{dA}](https://tex.z-dn.net/?f=%5Cfrac%7BdB%7D%7BdA%7D)
Differentiate implicitly the function
with respect to A to get,
![\cos {B}.\frac{dB}{dA}=\sqrt{\frac{3}{2}}\cos A\\\\\frac{dB}{dA}=\sqrt{\frac{3}{2}}.\frac{\cos A}{\cos B}](https://tex.z-dn.net/?f=%5Ccos%20%7BB%7D.%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Ccos%20A%5C%5C%5C%5C%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Ccos%20A%7D%7B%5Ccos%20B%7D)
b)
When
, the value of
is,
![\frac{dB}{dA}=\sqrt{\frac{3}{2}}.\frac{\cos {\frac{\pi}{4}}}{\cos {\frac{\pi}{3}}}\\\\=\sqrt{\frac{3}{2}}.\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\\\\=\sqrt{3}](https://tex.z-dn.net/?f=%5Cfrac%7BdB%7D%7BdA%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Ccos%20%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%7B%5Ccos%20%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D)
c)
In general, the linear approximation at x= a is,
![f(x)=f'(x).(x-a)+f(a)](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28x%29.%28x-a%29%2Bf%28a%29)
Here the function ![f(A)=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=f%28A%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
At ![A=\frac{\pi}{4}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%7D%7B4%7D)
![f(\frac{\pi}{4})=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{\frac{\pi}{4}}]\\\\=\sin^{-1}[\sqrt{\frac{3}{2}}.\frac{1}{\sqrt{2}}]\\\\\=\sin^{-1}(\frac{\sqrt{2}}{2})\\\\=\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5D%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5C%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
And,
from part b
Therefore, the linear approximation at
is,
![f(x)=f'(A).(x-A)+f(A)\\\\=f'(\frac{\pi}{4}).(x-\frac{\pi}{4})+f(\frac{\pi}{4})\\\\=\sqrt{3}.[x-\frac{\pi}{4}]+\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28A%29.%28x-A%29%2Bf%28A%29%5C%5C%5C%5C%3Df%27%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29.%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bf%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D%5Csqrt%7B3%7D.%5Bx-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D)
d)
Use part (c), when
, B is approximately,
![B=f(46°)=\sqrt{3}[46°-\frac{\pi}{4}]+\frac{\pi}{3}\\\\=\sqrt{3}(1°)+\frac{\pi}{3}\\\\=61.732°](https://tex.z-dn.net/?f=B%3Df%2846%C2%B0%29%3D%5Csqrt%7B3%7D%5B46%C2%B0-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D%281%C2%B0%29%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D61.732%C2%B0)