Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

Convex lenses are thicker at the centers than the edges, they are known as the converging lenses. Rays of light that pass through the lens are brought closer together (they converge). When rays of light that are parallel pass through a convex lens they are refracted, the refracted rays converge at one point called the principal focus.
Answer:
No
Explanation:
Cause a monster truck don
Answer:
26b) 66.7%
27) 500 N
Explanation:
26.a) In a two pulley system, the load is attached to one of the pulleys. The other pulley is attached to a fixed surface, as well as one end of the rope. The other end of the rope goes around moving pulley, then around the fixed pulley.
26.b) Mechanical advantage is the ratio between the forces:
MA = load force / effort force
Efficiency is the ratio between the work:
e = work done on load / work done by effort
Work is force times distance.
e = (F load × d load) / (F effort × d effort)
Rearranging:
e = (F load / F effort) × (d load / d effort)
e = MA × (d load / d effort)
In a two pulley system, the load moves half the distance of the effort. So the efficiency is:
e = (4/3) × (1/2)
e = 2/3
e = 66.7%
27) In a three pulley system, the load moves a third of the distance of the effort.
e = (F load / F effort) × (d load / d effort)
0.40 = (600 N / F) × (1/3)
F = 500 N