Answer:
A)s = 104.16 m
b)s= 104.16 m
Explanation:
Given that
u = 25 m/s
μ = 0.3
The friction force will act opposite to the direction of motion.
Fr= μ m g
Fr= - m a
a=acceleration
μ m g = - m a
a= - μ g
a= - 0.3 x 10 m/s² ( take g= 10 m/s²)
a= - 3 m/s²
The final speed of the mass is zero ,v= 0
We know that
v² = u² +2 a s
s=distance
0² = 25² - 2 x 3 x s
625 = 6 s
s = 104.16 m
By using energy conservation
Work done by all the forces =Change in the kinetic energy

Negative sign because force act opposite to the displacement.



- 3 x 2 x s = - 625
s= 104.16 m
Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
Answer:
(c) more than 500
Explanation:
Until 2019, more than 3000 planetary systems have been discovered that contain more than 4000 exoplanets, since some of these systems contain multiple planets. Most known extrasolar planets are gas giants equal to or more massive than the planet Jupiter, with orbits very close to its star.
Answer:
It is important because it carries useful energy through your house that you can use for a variety of tasks.
Explanation:
Hope this helped !
The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.