Barium-131's radiation level won't reach 1/4 of its initial level for 24 hours.
ln[A] t = -kt + ln[A] 0 is the integrated rate rule for the first-order reaction A's products.
A straight line is produced when the natural log of [A] is plotted as a function of time since this equation has the form y = mx + b.
How is the length of a half-life determined?
The amount of time needed for the reactant concentration to drop to half its initial value is known as the half-life of a reaction. A first-order reaction's half-life is a constant that is correlated with its rate constant:
t 1/2 = 0.693/k.
To know more about rate constant, visit:
brainly.com/question/20305871
#SPJ4
Answer:
<h2>93.02 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>93.02 moles</h3>
Hope this helps you
The paths in which electrons travel are called orbitals.
I believe that it is B chemicals containing carbon
Heat of vaporization of water will be required as water is already at it's boiling point thus heat required will be 540*10=5400 cal