1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
12

The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo

ntal, some of the tiny critters have reached a maximum height of 58.7 cm above the level ground. (See Nature, Vol. 424, July 31, 2003, p. 509.) (a) What was the takeoff speed for such a leap? (b) What horizontal distance did the froghopper cover for this world-record leap?
Physics
1 answer:
Jobisdone [24]3 years ago
7 0

(a) 4.0 m/s

We can solve this part just by analyzing the vertical motion of the froghopper.

The initial vertical velocity of the froghopper as it jumps from the ground is given by

u_y = u_0 sin \theta (1)

where

u_0 is the takeoff speed

\theta=58.0^{\circ} is the angle of takeoff

The maximum height reached by the froghopper is

h = 58.7 cm = 0.587 m

We know that at the point of maximum height, the vertical velocity is zero:

v_y = 0

Since the vertical motion is an accelerated motion with constant (de)celeration g=-9.8 m/s^2, we can use the following SUVAT equation:

v_y^2 - u_y^2 = 2gh

Solving for u_y,

u_y = \sqrt{v_y^2-2gh}=\sqrt{-2(-9.8)(0.587)}=3.4 m/s

And using eq.(1), we can now find the initial takeoff  speed:

u_0 = \frac{u_y}{sin \theta}=\frac{3.4}{sin 58.0^{\circ}}=4.0 m/s

(b) 1.47 m

For this part, we have to analyze the horizontal motion of the froghopper.

The horizontal velocity of the froghopper is

u_x = u_0 cos \theta = (4.0) cos 58.0^{\circ} =2.1 m/s

And this horizontal velocity is constant during the entire motion.

We now have to calculate the time the froghopper takes to reach the ground: this is equal to twice the time it takes to reach the maximum height.

The time needed to reach the maximum height can be found through the equation

v_y = u_y + gt

Solving for t,

t=-\frac{u_y}{g}=-\frac{3.4}{9.8}=0.35 s

So the time the froghopper takes to reach the ground is

T=2t=2(0.35)=0.70 s

And since the horizontal motion is a uniform motion, we can now find the horizontal distance covered:

d=u_x T = (2.1)(0.70)=1.47 m

You might be interested in
Please please please please PLEASE help!!!
inna [77]

Answer:

Because the electricity flows through and creates static bonds around the metal case which creates a bond with other fields that protects it.

Explanation:

8 0
3 years ago
How fast much an 816kg Volkswagen travel to have the same momentum as (a) a 2650kg Cadillac going 16.0 km/h? (b) a 9080-kg truck
Katyanochek1 [597]

Answer:

Explanation:

From the given information:

the car's momentum = momentum of the truck

∴

(a) 816 kg × v = 2650 kg × 16.0 km/h

v = (2650 kg × 16.0 km/h) /  816 kg

v = 51.96 km/hr

(b) 816 kg × v = 9080 kg × 16.0 km/h

v = (9080 kg × 16.0 km/h) /  816 kg

v = 178.04 km/hr

8 0
3 years ago
28. Sound can be heard around a corner because of
Lesechka [4]

Answer:

Diffraction of sound wavelengths.

Explanation:

Diffraction-A wave is able to bend around a corner due to the effects of diffraction. sound aves are capable of bending around corners in the same magnitude as it's wavelength making it possible to hear sounds around corners.

5 0
3 years ago
Pls someone I need it urgently and explain Solving and explanation so I can understand Thank you
Temka [501]

Answer:

   f = 6.37 Hz,       T = 0.157 s

Explanation:

The expression you have is

       y = 5 sin (3x - 40t)

this is the equation of a traveling wave, the general form of the expression is

      y = A sin (kx - wt)

where A is the amplitude of the motion, k the wave vector and w the angular velocity

Angle velocity and frequency are related

         w = 2π f

         f = w / 2π

from the equation w = 40 rad / s

        f = 40 / 2π

        f = 6.37 Hz

frequency and period are related

       f = 1 / T

       T = 1 / f

       T = 1 / 6.37

       T = 0.157 s

4 0
3 years ago
A slit has a width of W1 = 4.4 × 10-6 m. When light with a wavelength of λ1 = 487 nm passes through this slit, the width of the
Vitek1552 [10]

Answer:

The width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

Explanation:

To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes.  Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

w sin\theta = m\lambda

Where,

w = width

\lambda =wavelength

m is an integer, m = 1, 2, 3...

We here know that as sin\theta as w are constant, then

\frac{w_1}{\lambda_1} = \frac{w_2}{\lambda_2}

We need to find w_2, then

w_2 = \frac{w_1}{\lambda_1}\lambda_2

Replacing with our values:

w_2 = \frac{4.4*10^{-6}}{487}496

w_2 = 4.48*10^{-6}m

Therefore the width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

3 0
3 years ago
Other questions:
  • An imbalance of _____________ causes an object to be charged.
    5·1 answer
  • How many significant figures is in 15,600
    14·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 9 km/s and a frequency of 2 Hz?
    10·1 answer
  • On an asteroid, the density of dust particles at a height of 3 cm is ~30% of its value just above the surface of the asteroid. A
    11·1 answer
  • Explain what happens to particles in diffusion. What causes diffusion?
    6·2 answers
  • The movement of the plates of the Earth are responsible for exposing rocks to weathering.
    15·1 answer
  • A man standing on a bus remains still when the bus is at rest. When the bus moves forward and then slows down the man continues
    13·2 answers
  • Please Explain it to me I really need help with this if you can I will mark u brainliest​
    10·1 answer
  • Sa paanong paraan moipinapakita ang iyong pakikiisa sa nga gawaing nag papakita Ng kabutihang panlahat?
    14·1 answer
  • A mass m is attached to an ideal massless spring. When this system is set in motion with amplitude a, it has a period t. What is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!