Answer:No
Explanation:
No
As the train is accelerating so train velocity will be more as compared to the ball and thus will cover more distance as compared to the ball.
When the ball is thrown upward with some velocity, it also possesses the train velocity at the time of throwing but as time passes velocity of train increases due to acceleration of the train. This causes the ball to fall behind the point of launch.
We have that the speed of a body covering a distance of 320 km in 4h is mathematically given as
V=22.22m/s is
<h3 /><h3>
Speed</h3>
From the question we are told
calculate the speed of a body covering a distance of 320 km in 4h
Generally the equation for the Speed is mathematically given as

V=22.22m/s
Hence
The speed of a body covering a distance of 320 km in 4h is
V=22.22m/s
For more information on Speed visit
brainly.com/question/7359669
Momentum = mass x velocity so if velocity is kept same and mass is increased then momentum will increase.
Answer:
Explanation:
mass of object, m = 3 kg
spring constant, K = 750 n/m
compression, x = 8 cm = 0.08 m
angle of gun, θ = 30°
(a) As the ball is launched, it has some velocity due to the compression in the spring, so it has some kinetic energy.
(b) Let v be th evelocity of ball at the tim eof launch.
by using the conservation of energy
1/2 Kx² = 1/2 mv²
750 x 0.08 x 0.08 = 3 x v²
v = 1.265 m/s
By use of the formula of maximum height


h = 0.02 m
h = 2 cm
Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike