To look for the acceleration, it will come from:
vf^2=v0^2+2ad
where:
vf = final velocity = 0
v0 = initial velocity =251 m/s
a = acceleration
d= distance traveled = 0.237 m
0=251^2+2a(0.237 )
a= -251 ^2 / (2*0.237) =-132 913.502 m/s/s
we find the force from:
F = ma = 0.0115kg*(-1.32x10^5m/s/s) = -1518 N
the negative sign shows that the force is in the direction contradictory the
bullet's motion
Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
Answer:
C
Explanation:
If a pulley system has an efficiency of 74.2%, then only that fraction of the work performed will be useful. 74.2%=0.742. 0.742*200 is about 148J. Hope this helps!
Answer:
A related type of beta decay
Explanation: