The variable we have to determine for this problem is the time. Since the given information is speed, we have to know the distance so that we can solve for the time. From literature, the distance between the Earth and the moon is 384,400,000 meters. Therefore,
Speed = Distance/Time
Time = Distance/Speed
Time = 384,400,000 m/ 3×10⁸ m/s = 1.28 seconds
I would personally say C. Energy only...
Answer:
A. 1350
You multiply 18.21HNO3* 1mol MgN2O6 * 148.30MgN2O6
Then divide it by the 2mol HNO3 to get 1350
Answer:
This tells us the radial velocity of the object and that the object is approaching or coming towards us.
Explanation:
Certain chemicals radiate with particular wavelengths or colors when their temperature is raised or when they are charged electrically. Also observable are dark strokes separating the spectrum known as absorption lines
These spectral lines of chemicals are well known as stated above and from the phenomenon of Doppler effect, spectroscopy can be used to detect the movement of a distant object by the change of the emitted frequency of the wavelength
The Doppler effect is used in calculating the radial velocity of a distant object due to the fact that an approaching object compresses its emitted signal wavelength while a receding object has a longer wavelength than normal
Answer:
The conservation of energy principle states that energy can neither be destroyed nor created. Instead, energy just transforms from one form into another. So what exactly is energy transformation? Well, as you might guess, energy transformation is defined as the process of changing energy from one form to another. There are so many different kinds of energy that can transform from one form to another. There is energy from chemical reactions called chemical energy, energy from thermal processes called heat energy, and energy from charged particles called electrical energy. The processes of fission, which is splitting atoms, and fusion, which is combining atoms, give us another type of energy called nuclear energy. And finally, the energy of motion, kinetic energy, and the energy associated with position, potential energy, are collectively called mechanical energy. That sounds like quite a lot, doesn't it? Well it is, but don't worry, it's actually all pretty easy to remember. Next, we'll explore all of these kinds of possible transformations in more detail. Different Types of Energy Transformations Chemical energy is the energy stored within a substance through the bonds of chemical compounds. The energy stored in these chemical bonds can be released and transformed during any type of chemical reaction. Think of when you're hungry. When you eat a piece of bread to satisfy this hunger, your body breaks down the chemical bonds of the bread and uses it to supply energy to your body. In this process, the chemical energy is transformed into mechanical energy, which you use to move, and which we'll cover in more detail in a moment. It also transforms it into thermal energy, which is created through the metabolic processes in your body to generate heat. Most of the time, chemical energy is released in the form of heat, and this transformation from chemical energy to heat, or thermal energy, is called an exothermic reaction. Next, there are two main types of mechanical energy: kinetic energy and potential energy. Kinetic energy is the energy associated with the motion of an object. Therefore, any object that moves has kinetic energy. Likewise, there are two types of potential energy: gravitational potential energy and elastic potential energy. Gravitational potential energy is associated with the energy stored by an object because of its location above the ground. Elastic potential energy is the energy stored by any object that can stretch or compress. Potential energy can be converted to kinetic energy and vice versa. For example, when you do a death-defying bungee jump off of a bridge, you are executing a variety of energy transformations. First, as you prepare to jump, you have gravitational potential energy - the bungee cord is slack so there is no elastic potential energy. Once you jump, you convert this gravitational potential energy into kinetic energy as you fall down. At the same time, the bungee cord begins to stretch out. As the cord stretches, it begins to store elastic potential energy. You stop at the very bottom when the cord is fully stretched out, so at this point, you have elastic potential energy. The cord then whips you back up, thereby converting the stored elastic potential energy into kinetic energy and gravitational potential energy. The process then repeats
Explanation:
here u go :P