Answer:
D
Explanation:
Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. It is found in amino acids that make up proteins, in nucleic acids, that comprise the hereditary material and life's blueprint for all cells, and in many other organic and inorganic compounds.
The mass number of aluminium hydroxide is 78 thus, the number of moles in 0.745 g is:
no. of moles= mass/ RFM
= 0.745/78
=0.00955moles
Therefore the 0.00955 moles should be in the 35.18 ml
therefore 1000ml of the solution will have:
(0.00955ml×1000ml)/35.18
=0.2715moles
The solution will be 0.27M hydrochloric acid
Answer:
a. Sn or Si ⇒ Sn
b. Br or Ga ⇒ Ga
c. Sn or Bi ⇒ similar in size
d. Se or Sn ⇒ Sn
Explanation:
The larger atom has a larger atomic radius. We have to consider how varies the atomic radius for chemical elements in the Periodic Table. In a group (column), the atomic radius increases from top to bottom while in a period (file), it increases from right to left.
a. Sn or Si ⇒ Sn
They are in the <u>same group</u>. Sn is on the top, so it has a larger atomic radius.
b. Br or Ga ⇒ Ga
They are in the <u>same period</u>. Ga is located at the left so it has a larger atomic radius.
c. Sn or Bi ⇒ similar
They are not in the same group neither the same period. Bi is located more at the bottom, so it would be larger than Sn, but Bi is also at the right side, so it would be smaller than Bi. Thus, they have comparable sizes.
d. Se or Sn⇒ Sn
They are not in the same group neither the same period. Se is located at the top and right side compared to Sn, so Sn is the larger atom.
Answer:
1.99 atm
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial pressure (P1) = 0.520 atm
Initial temperature (T1) = 26.2°C
Initial volume (V1) = 15.4L
Final temperature (T2) = constant = 26.2°C
Final volume (V2) = 4.02L
Final pressure (P2) =..?
Step 2:
Determination of the new pressure of the gas.
Since the temperature of the gas is constant, it means the gas is obeying Boyle's law. Thus, the new pressure of the gas can be obtained by applying the Boyle's law equation as shown below:
P1V1 = P2V2
0.520 x 15.4 = P2 x 4.02
Divide both side by 4.02
P2 = (0.520 x 15.4) / 4.02
P2 = 1.99 atm
Therefore, the new pressure of the gas is 1.99 atm