Answer:

This occurs through radiation, convection, conduction, and, if the subject is wet, evaporation. Most commonly, the body temperature decreases, although in more extreme climates an increase in cadaver temperature may result.
Use the Clausius-Clapeyron equation...
<span>Let T1 be the normal boiling point, which will occur at standard pressure (P1), which is 101.3 kPa (aka 760 torr or 1.00 atm). You know the vapour pressure (P2) at a different temperature (T2). And you are given the enthalpy of vaporization. Therefore, we can use the Clausius-Clapeyron equation.
</span>
![ln(P_1/P_2) = \frac{-\delta H_{vap}}{R} \times [\frac{1}{T_1} - \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28P_1%2FP_2%29%20%3D%20%5Cfrac%7B-%5Cdelta%20H_%7Bvap%7D%7D%7BR%7D%20%20%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
<span>
</span><span>ln(101.3 kPa / 52.7 kPa) = (-29.82 kJ/mol / 8.314x10^{-3} kJ/molK) (1/T - 1/329 K)
</span>
------ some algebra goes here -----
<span>T = 349.99K ...... or ...... 76.8C </span>
Answer:
No
Explanation:
Chemical equilibrium is reached by the forward reaction rate equaling the reverse reaction rate. If the reaction is not reversible, this could not occur.
Answer:d
Explanation:I’m not 100% sure how to explain it but I’m almost for sure it’s d.