It would be B because you want to know which TEMPERATURE is the best for the plant. Different brightness for a bulb will give different amounts of heat. Since the amount of heat is your INDEPENDENT VARIABLE, you have to change the amount of heat for each plant, so the brightness of bulbs. Therefore, B is your answer!
PV = nRT
P = (nRT)/V
P = (0.3 mol × 0.08206 atm-l/(mol-K) × (273.15 + 30) K)/(0.5 l)
P = 14.9258934 atm
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃
1. Decreases by 4. (B)
2. The atomic number changes. (B)
3. 56/26 Fe. (C)
4. Potassium-40;t1/2=25 days. (B)
5. Takes place in the upper atmosphere. (A)