The balanced chemical reaction is written as:
<span>CH4 (g) + 2 O2 (g) ----> CO2 (g) + 2 H2O (g)
</span>
We are given the amount of water to be produced from the reaction. This amount will be used for the calculations. Calculations are as follows:
12.4 L H2O ( 1 mol / 22.4 L ) ( 1 mol CH4 / 2 mol H2O ) ( 22.4 L / 1 mol ) = 6.2 L CH4
Answer:
Explanation:
48000 minutes [ 1 hour / 60 min ] 1 day / 24 hours ] [365 days / year]
48000 * [ 1/(60 * 24 * 365)]
48000 * [1 / 525600]
There are 0.0930954years in 48000 minutes
Answer:
3.1atm
Explanation:
Given parameters:
Volume of gas = 2L
Number of moles = 0.25mol
Temperature = 25°C = 25 + 273 = 298K
Unknown:
Pressure of the gas = ?
Solution:
To solve this problem, we use the ideal gas equation.
This is given as;
PV = nRT
P is the pressure
V is the volume
n is the number of moles
R is the gas constant = 0.082atmdm³mol⁻¹K⁻¹
T is the temperature
P =
Now insert the parameters and solve;
P =
= 3.1atm
PbSO₄ partially dissociates in water. the balanced equation is;
PbSO₄(s) ⇄ Pb²⁺(aq) + SO₄²⁻(aq)
Initial - -
Change -X +X +X
Equilibrium X X
Ksp = [Pb²⁺(aq)] [SO₄²⁻(aq)]
1.6 x 10⁻⁸ = X * X
1.6 x 10⁻⁸ = X²
X = 1.3 x 10⁻⁴ M
Hence the Pb²⁺ concentration in underground water is 1.3 x 10⁻⁴ M.
[Pb²⁺] = 1.3 x 10⁻⁴ M.
= 1.3 x 10⁻⁴ mol / L x 207 g / mol
= 26.91 ppm