Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
SEAgel (Safe Emulsion Agar gel) is one of a class of high-tech foam materials known as aerogels.
Answer:
What do you mean what happened?
Explanation:
???
Answer:
Explanation:
Stereoisomers are two or more atoms that have the same bonding order of atoms but there is a difference spatial arrangement of the atoms in space.
A plane of symmetry divides a molecule into two equal halves.
A chiral stereoisomer are not superimposed on a mirror image , Hence they do not posses a plane of symmetry.
As a result to that. these non-superimposable mirror images are said to be Enantiomers.
However, a Fischer Projection emanates from a two - dimensional figure which is used for presenting a three - dimensional organic molecules.
From the given question;
Fischer projection for an enantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right.
we can sketch the way the enantiomer of 2-bromo-2,3-dihydroxypropanal can be seen like the one shown below:
CH₂OH
|
|
|
Br -------------|----------------OH
|
|
|
CHO
The objective of this question is to drawn the perspective formula of the molecule.
So , from the attached file below; we can see the perspective formula of the molecule in a well structured 3-D format.