Answer:
I might next year with my cuz and nex year ima be in 8th
Explanation:
iron Presence of trace elements, irradiation and iron impurities give the gem amethyst its purplish color!
Answer:
Explanation:
We can calculate the volume of the oxygen molecule as the radius of oxygen molecule is given as 2×10⁻¹⁰m.
We know that volume=4/3×πr³
volume =4/3×π(2.0×10⁻¹⁰m)³
volume=33.40×10⁻³⁰m³
Volume of oxygen molecule=33.40×10⁻³⁰m³
we know the ideal gas equation as:
PV=nRT
k=R/Na
R=k×Na
PV=n×k×Na×T
n×Na=N
PV=Nkt
p is pressure of gas
v is volume of gas
T is temperature of gas
N is numbetr of molecules
Na is avagadros number
k is boltzmann constant =1.38×10⁻²³J/K
R is real gas constant
So to calculate pressure using the formula;
PV=NkT
P=NkT/V
Since there is only one molecule of oxygen so N=1
P=[1×1.38×10⁻²³J/K×300]/[33.40×10⁻³⁰m³
p=12.39×10⁷Pascal
Answer:
2.387 mol/L
Explanation:
The reaction that takes place is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
First we <u>calculate how many moles of each reagent were added</u>:
- HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
- Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂
460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.
Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:
- 203.85 mmol HCl *
= 101.925 mmol Ba(OH)₂
This means the remaining Ba(OH)₂ is:
- 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂
There are two OH⁻ moles per Ba(OH)₂ mol:
- OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻
Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):
- 716.15 mmol OH⁻ / 300.0 mL = 2.387 M
So the answer is 2.387 mol/L
This is false. An alcohol does indeed have a polar C-O single bond, but what we should really be focusing on is the extraordinarily polar O-H single bond. When oxygen, fluorine, or nitrogen is bound to a hydrogen atom, there is a small (but not negligible) charge separation, where the eletronegative N, O, or F has a partial negative charge, and the H has a partial positive charge. Water has two O-H single bonds in it (structure is H-O-H). The partially negative charge on the O of the water molecule (specifically around the lone pair) can become attracted either a neighboring water molecule's partially positive H atom, or an alcohol's partially positive H atom. This is weak (and partially covalent) attraction is called a hydrogen bond. This is stronger than a typical dipole-dipole attraction (as would be seen between neighboring C-O single bonds), and much stronger than dispersion forces (between any two atoms). When the solvent (water) and the solute (the alcohol) both exhibit similar intermolecular forces (hydrogen bonding being the most important in this case), they can mix completely in all proportions (i.e. they are miscible) in water.