Answer:
The angular acceleration of the wheel is -6.54 rad/s²
Explanation:
We'll use the equations of motion for this.
w = 2πf
f = 75 rpm = 1.25 rps = 1.25 rev/s
w₀ = initial angular velocity = 2π × 1.25 = 7.85 rad/s
w = final angular velocity = 0 rad/s
t = 1.2 s
α = ?
w = w₀ + αt
0 = 7.85 + 1.2α
α = 7.85/1.2 = - 6.54 rad/s²
The cat has two directions of motions:
The horizontal motion = Dx = 2.2 m
The vertical motion = Dy = -1.3 m (negative sign indicates that the cat is falling)
a = 9.8 m/sec^2
Vy = zero (since you are not moving up)
From the laws of motion:
<span>Dy = Vyt + 0.5ayt^2
</span>-1.3 = 0(t) + 0.5(-9.8)t^2
<span>t = 0.52s
</span>
Then, again using the laws of motion (but for the horizontal direction this time)
Dx = Vxt
<span>2.2 = Vx0.52 </span>
<span>Vx = 2.2/0.52 </span>
<span>= 4.23 m/s
</span>
<span>Therefore the cat's speed when it slid off the table is 4.23 m/s horizontally.</span>
Answer:
The actual elevation angle is 12.87 degrees
Explanation:
In the attachment you can clearly see the situation. The angle of elevation as seen for the scuba diver is shown in magenta, we conclude that
.
Using Snell's Law we can write:

,
Let's approximate the index of refraction of the air (medium 1 in the picture) to 1.
We thus have:

. Calling
the actual angle of elevation, we get from the picture that
m/s^2 is 39.2266
is the answer If thats what you needed
Answer:
11.98 N
Explanation:
Normal force = mg = 2.03 * 9.81
coeff of static friction must be overcome for the book to begin moving
.602 = F / (2.03 * 9.81) = 11.98 N