Answer:
K = 0.076 J
Explanation:
The height of the target, h = 0.860 m
The mass of the steel ball, m = 0.0120 kg
Distance moved, d = 1.50 m
We need to find the kinetic energy (in joules) of the target ball just after it is struck. Let t is the time taken by the ball to reach the ground.

Put all the values,

The velocity of the ball is :

The kinetic energy of the ball is :

So, the required kinetic energy is 0.076 J.
<span>{c o {a la manzana o
<span>Vapor de agua en el aire en una ducha de agua caliente</span>
</span>
Answer:
3. 0.5 sec.
Explanation:
A bullet fired horizontally follows a projectile motion, which consists of two independent motions:
- A horizontal motion with constant speed
- A vertical motion with constant acceleration, g = 9.8 m/s^2, towards the ground
The time taken for the bullet to reach the ground can be calculated just by considering the vertical motion:

where y is the vertical position at time t, h is the initial height, and
is the initial vertical velocity of the bullet.
Since the bullet is fired horizontally,
. So the equation becomes

And the time that the bullet takes to reach the ground can be found by requiring y=0 and solving for t:

As we can see, in this equation there is no dependance on the initial speed of the bullet: therefore, if the bullet is fired still horizontally but with a different speed, it will still take the same time (0.5 s) to reach the ground.
First of all we know about the ionic bond that the attraction b/w two atoms the atom which lose electrons is become cation and have positive sing which one get electrons it become ionic. so in such sitivation the sodium lose one electons "that's why sodium has 1+ charge in Nacl chemacal bond."
hope it will help you and please get my answer in brainlist
"i should be thankfull of you"