At 20 seconds it will be 12.6 because at 10 seconds it was as at approximately 6.3 so we times it by 2 to get the 20s
Answer:
The flow of energy from falling water to the steam is;
a) Mechanical → Mechanical → Electrical → Thermal → Thermal
Explanation:
1) Mechanical → Mechanical
The water in the pipe before it falls possesses potential energy which it converts into kinetic energy as it falls from height
2) Mechanical → Mechanical
The water falling from the pipe stream unto the turbine wheel transfers its kinetic (mechanical) energy due to its motion on to the turbine wheel to give the wheel rotational motion
3) Mechanical → Electrical
The kinetic (mechanical) energy from the rotating turbine wheel is converted into electrical energy in the electrical generator which transported through the electrical circuit
4) Electrical → Thermal
The electrical energy from the electric current is then converted into thermal energy as the current passes through the resistors in the heating filament
5) Thermal → Thermal
The heated filament transfers thermal energy to the the water in the beaker by conduction which raises the temperature of the water such that as the water acquires more thermal energy it turns into steam
Therefore, we have the flow of energy from the falling water to steam as follows;
1) Mechanical 2) Mechanical 3) Electrical 4) Thermal 5) Thermal
Answer:
-352.275KJ
Explanation:
We are given that
Mass of car=1500kg
Initial speed of car =u=96 km/h=
1km/h=
Final speed of car=v=56km/h=
Distance traveled by car=s=55m
We have to find the work done by the car's braking system.
Using third equation of motion




Where negative sign indicates that velocity of car decreases.
Work done by a car's barking system=
Work done by a car's barking system=
Work done by a car's barking system=
1KJ=1000J
Where negative sign indicates that work done in opposite direction of motion.
Now we know by Ohm's law that
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points.
Introducing the constant of proportionality, the resistance,the Ohm's law can be mathematically represented as
V=I x R
Where V is the voltage measured in volts
I is the current measured in amperes
R is the resistance measured in ohms
Given:
I = 2 A
V= 110 V
Applying Ohm's law and substituting the given values in the above formula we get
V=I x R
110 = 2 X R
R = 55 ohms
Answer:
The speed of a wave would be 18 with a wavelength of 2 m and a frequency of 9 Hz.