Just from that one observation, choice-B
would be a reasonable conclusion.
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
False. An Electromagnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
At a particular location, when an an increase in the rate at which water moves from the hydrosphere to the atmosphere, an increase in humidity is expected at that location. The term "humidity" generally refers to the amount of water vapor in the atmosphere.
Answer:
Explanation:
- For diagram refer the attachment.
It is given that five cells of 2V are connected in series, so total voltage of the battery:

Three resistor of 5
, 10
, 15
are connected in Series, so the net resistance:



According to ohm's law:


On substituting resultant voltage (V) as 10 V and resultant resistant, as 30
we get:


The electric current passing through the above circuit when the key is closed will be <u>0.33 A</u>