1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
7

Find the value of cosAcos2Acos3A...........cos998Acos999A where A=2π/1999

Mathematics
2 answers:
Lady bird [3.3K]3 years ago
7 0
Hello,

Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.

Let's assume
P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a)
Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a)

As sin x *cos x=sin (2x) /2

P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*....
         *1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors)
= 1/(2^999) * sin(2a)*sin(4a)*...
     *sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
 as sin(x)=-sin(2pi-x) and 2pi=1999a

sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a)
sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a)
...
sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a)
sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a)

So  sin(2a)*sin(4a)*...
     *sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
= sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-".

Thus
P*Q=1/2^999*Q or Q!=0 then
P=1/(2^999)

       








wel3 years ago
3 0

Answer:

The value of given expression is \frac{1}{2^{999}}.

Step-by-step explanation:

The given expression is

\cos A\cos 2A\cos 3A...........\cos 998A\cos 999A

where, A=\frac{2\pi}{1999}

Let as assume,

P=\cos A\cos 2A\cos 3A...........\cos 998A\cos 999A

Q=\sin A\sin 2A\sin 3A...........\sin 998A\sin 999A

2^{999}PQ=2^{999}(\cos A\cos 2A.........\cos 999A)(\sin A\sin 2A........\sin 999A)

2^{999}PQ=(2\cos A\sin A)(2\cos 2A\sin 2A)...........(2\cos 998A\sin 998A)(2\cos 999A\sin 999A)

Using the formula, 2\sin x\cos x=\sin 2x, we get

2^{999}PQ=\sin 2A\sin 4A......\sin 1998A

2^{999}PQ=[\sin 2A\sin 4A......\sin 998A][-\sin(2\pi -1000A)][-\sin(2\pi -1002A)]...[-\sin(2\pi -1998A)]             .... (1)

Now,

-\sin(2\pi -1000A)=-\sin(2\pi -1000(\frac{2\pi}{1999}))

-\sin(2\pi -1000A)=-\sin(\frac{2\pi\cdot 999}{1999})

-\sin(2\pi -1000A)=-\sin 999A

So, equation (1) can be written as

2^{999}PQ=[\sin 2A\sin 4A......\sin 998A][\sin 999A\sin 997...\sin A]

2^{999}PQ=\sin A\sin 2A\sin 3A...........\sin 998A\sin 999A

2^{999}PQ=Q

Divide both sides by Q.

2^{999}P=1

Divide both sides by 2^{999}

P=\frac{1}{2^{999}}

Therefore the value of given expression is \frac{1}{2^{999}}.

You might be interested in
6. Find an exact value. (1 point)
vladimir2022 [97]
<span>6 Find an exact value. 
sin 75°
</span>sin(A+B)=sin(A)cos(B)+cos(A)sin<span>(B)
</span>sin(45)=cos(45)=(2^0.5)/2    sin(30)=0.5      cos(30)=(3^0.5)/2
sin(45+30)=sin(45)cos(30)+cos(45)sin(30)=(6^0.5+2^0.5)/4
the answer is the letter d) quantity square root of six plus square root of two divided by four.

<span>7. Find an exact value. 
sine of negative eleven pi divided by twelve.

</span>sin(-11pi/12) = -sin(11pi/12) = -sin(pi - pi/12) = -sin(pi/12) = -sin( (pi/6) / 2)

= - sqrt( (1-cos(pi/6) ) / 2) = -sqrt( (1-√3/2) / 2 ) = -(√3-1) / 2√2=(√2-√6)/4
the answer is the letter c) quantity square root of two minus square root of six divided by four.

<span>8. Write the expression as the sine, cosine, or tangent of an angle. 
sin 9x cos x - cos 9x sin x
</span>

sin(A−B)=sinAcosB−cosAsinB

sin(9x−x)= sin9xcosx−cos9xsinx= sin(8x)

the answer is the letter c) sin 8x

<span>9. Write the expression as the sine, cosine, or tangent of an angle. 
cos 112° cos 45° + sin 112° sin 45°

</span>

cos(A−B)=cosAcosB<span>+sinA</span>sinB

cos(112−45)=cos112cos45<span>+sin112</span>sin45=cos(67)

the answer is the letter d) cos 67°

10. Rewrite with only sin x and cos x.

sin 2x - cos 2x

 

sin2x = 2sinxcosx<span>
cos2x = (cosx)^2 - (sinx)^2 = 2(cosx)^2 -1 = 1- 2(sinx)^2</span>

sin2x- cos2x=2sinxcosx-(1- 2(sinx)^2=2sinxcosx-1+2(sinx)^2

sin2x- cos2x=2sinxcosx-1+2(sinx)^2

<span>the answer is the letter <span>b) 2 sin x cos2x - 1 + 2 sin2x</span></span>
4 0
4 years ago
Read 2 more answers
in an exam 90% students passed if the 15 student fail find the number of students appeared in the examination​
Oliga [24]

Answer:

150

Step-by-step explanation:

15 fail

90 percent pass

15=10 percent

135=90 percent

150

6 0
3 years ago
Read 2 more answers
The difference between the cost of fish and the coast of meat is no less than 150​
zmey [24]

Answer:

I thought fish was another form of meat but wow!!

Step-by-step explanation:

7 0
3 years ago
What is 339.12 rounded to the nearest hundreth
lbvjy [14]

Answer:

339.12 rounded to the nearest hundreth is 339

Because the hundreth place right now is 1 so anything below five keep the same

Please consider brainliest <3

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
How can I solve this?
nadezda [96]
About 12 would be the correct answer i may be wrong but i worked it out and got that idk how but i did
7 0
3 years ago
Other questions:
  • Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
    9·1 answer
  • 14 + 21 + 16<br> Total count –<br> Mean Value
    8·1 answer
  • Pls help. Evaluate the expression 3.14(a2 + ab) when a = 3 and b = 4. (Input decimals only, such as 12.71, as the answer.)
    13·1 answer
  • Question 1) Given: F(x) = 3x^2 + 1, G(x) = 2x - 3, H(x) = x
    5·1 answer
  • Y=3/5x-5 graph using the slope and the y-intercept
    14·1 answer
  • Multiply 3/sqrt17- sqrt2 by which fraction will produce an equivalent fraction with rational denominator
    13·2 answers
  • 45 is what percent of 150
    6·2 answers
  • Graph the line that has a slope of 1/4 and includes the point (0,8)
    14·1 answer
  • What is 5 times 3 times 7 add 7
    14·1 answer
  • Anyone happen to know this?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!