Find the value of cosAcos2Acos3A...........cos998Acos999A where A=2π/1999
2 answers:
Hello, Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh. Let's assume P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a) Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a) As sin x *cos x=sin (2x) /2 P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*.... *1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors) = 1/(2^999) * sin(2a)*sin(4a)*... *sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a) as sin(x)=-sin(2pi-x) and 2pi=1999a sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a) sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a) ... sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a) sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a) So sin(2a)*sin(4a)*... *sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a) = sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-". Thus P*Q=1/2^999*Q or Q!=0 then P=1/(2^999)
Answer:
The value of given expression is .
Step-by-step explanation:
The given expression is
where,
Let as assume,
Using the formula, , we get
.... (1)
Now,
So, equation (1) can be written as
Divide both sides by Q.
Divide both sides by
Therefore the value of given expression is .
You might be interested in
Answer:
b is correct
Step-by-step explanation:
hope this helps
Choice E. The answer is congruent.
Answer:
A lot of work, but CD=$15, Premium=$35, and Deluxe=$85
ΔABC ~ ΔADE AC/AE = AB/AD AC/(AC+15) = 8/18 18AC = 8(AC+15) 18AC = 8AC + 120 18AC - 8AC = 120 10AC = 120 AC = 120/10AC = 12