Answer:
9.8N
Explanation:
Here we can get gravitational acceleration according to the place where object is placed by bellow equation
g = GM/R²
g - Gravitational Acceleration
G - Gravitational constant (6.67×10-11)
R - Distance ( Radius )
g = 6.67 × 10-11 × 1024 /(6.37×106)²
g = 9.8 m/s²
There for
Weight = Mass × Gravitational acceleration
= 1×9.8
= 9.8 N
Increasing the number of bulbs in a series circuit decreases the brightness of the bulbs. In a series circuit, the voltage is equally distributed among all of the bulbs. Bulbs in parallel are brighter than bulbs in series. In a parallel circuit the voltage for each bulb is the same as the voltage in the circuit.
Simple cells have liquid chemicals, making it harder for it to carry. While as dry cells have no liquid chemicals, making it easier to carry.
Answer:
Final velocity, V = 11.5m/s
Explanation:
Given the following data;
Initial velocity, U = 2.5m/s
Acceleration, a = 1.5m/s²
Time, t = 6secs
To find the final velocity, we would use the first equation of motion
V = U + at
Substituting into the equation, we have
V = 2.5 + 1.5*6
V = 2.5 + 9
Final velocity, V = 11.5m/s