Answer:
Explanation:
Law of conservation of momentum is applied in solving collision problem. When two body collides, their momentum after collision can be determined using the law.
The law States that the sum of momentum of two bodies before collision is equal to the sum of their momentum after collision. Before collision, both bodies moves with a different velocity while during some cases, the bodies moves with a common velocity after collision.
Whether they move with or without the same velocity depends on the type of collision that exists between them after the collision. After collision, some object sticks together and move with a common velocity while some doesn't.
If the bodies sticks together after collision, the type of collision that occur is inelastic (energy is not conserved) and if they splits after collision, the type of collision that occur is an elastic collision (energy is conserved).
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities before collision
v1 and v2 be their velocities after collision.
According to the law;
m1u1 + m2u2 = m1v1 + m2v2
Note that momentum = mass × velocity of the body.
Answer:N=0
Explanation:
Given


both blocks experiencing free fall so net weight of block during free fall is zero thus there is no normal reaction between them.
N=0
<span>Heating food under a heat lamp is an example of heat transfer by
<span>Radiation</span></span>
Correct answer choice is :
A) From A to B is known as the wavelength and changing the pitch of the note will change its length.
Explanation:
The amount or quantity of period within two things, points, lines, etc. the state or fact of existing separate in space, as of one thing from another; remoteness. a linear amount of space: Seven miles is a distance too great to walk in an hour. Distance is a scalar quantity describing the interval in two points. It is just the measure of the interval.
Answer: The motion of the object will remain the same
Explanation: