The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
The correct order given below shows the changes that occurs in a mice population in response to changes in their environment:
- The population of mice is in an environment with many black rocks
- Mice with black for are more likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have black fur
- A sandstorm covers most of the population's environment with brown sand
- Mice with black fur are less likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have brown fur
<h3>What is the correct order for natural selection in the desert environment given?</h3>
Based on the process of natural selection due to envrionmental pressures, the population of the mice in the desert changes as follows before and after the environmental change:
- The population of mice is in an environment with many black rocks
- Mice with black for are more likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have black fur
- A sandstorm covers most of the population's environment with brown sand
- Mice with black fur are less likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have brown fur
Therefore, the correct order shows the changes that occurs in a mice population in response to changes in their environment.
Learn more about about adaptation at: brainly.com/question/25594630
Answer:
The correct answer is - Frequency is the number of wavelengths, which is measured in hertz.
Explanation:
Frequency is the number of waves that go through a fixed point at a particular time. Hertz is the SI unit for frequency which means that one hertz is equal to a unit number of waver passes in a unit time to a fixed point.
As the frequency of a wave increases which means the number of waves increases in the unit time, the shorter the wavelength will be.
a higher frequency wave has more energy than a lower frequency wave with the same amplitude.
Answer:
f = 3 × 10⁶ Hz
Explanation:
Given data:
Wavelength of wave = 1.0 ×10² m
Frequency = ?
Solution:
Formula:
Speed of light = wavelength× frequency
Frequency = speed of light / wavelength
speed of light = 3× 10⁸ m/s
f = 3× 10⁸ m/s / 1.0 ×10² m
f = 3 × 10⁶ s⁻¹
s⁻¹ = Hz
f = 3 × 10⁶ Hz
I think the answer is [Xe] 6s2