Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.
Answer:
1.63ₓ10⁻⁶ g of U
139.03 g of H
0.385 g of O
141.8 g of Pb
Explanation:
In first place, we need to convert the number of atoms to moles, as we know that 1 mol of anything occupies 6.02×10²³ particles
Therefore:
4.12×10¹⁵ atoms of U . 1 mol / 6.02×10²³ atoms = 6.84×10⁻⁹ moles of U
8.37×10²⁵ atoms of H . 1 mol /6.02×10²³ atoms = 139.03 moles of H
1.45×10²² atoms of O . 1 mol /6.02×10²³ atoms = 0.0241 moles of O
4.12×10²³ atoms of Pb . 1 mol /6.02×10²³ atoms = 0.684 moles of Pb
Moles . Molar mass = Mass (g)
6.84×10⁻⁹ moles of U . 238.03 g/mol = 1.63ₓ10⁻⁶ g of U
139.03 moles of H . 1 g/mol = 139.03 g of H
0.0241 moles of O . 16 g/mol = 0.385 g of O
0.684 moles of Pb . 207.2 g/mol = 141.8 g of Pb
Answer:
Ca(OH)2 molecular weight. Molar mass of Ca(OH)2 = 74.09268 g/mol. This compound is also known as Calcium Hydroxide. Convert grams Ca(OH)2 to moles or moles Ca(OH)2 to grams. Molecular weight calculation: 40.078 + (15.9994 + 1.00794)*2 ››