v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ;
and solve for "v".
______________________________________________________
Explanation:
_____________________________________________________
The formula is: KE = (½) * (m) * (v²) ;
_____________________________________
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note: Velocity is similar to speed, in that velocity means "speed and direction"; however, if you "square" a negative number, you will get a "positive"; since: a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ; to solve for "(v)" ; velocity, which is very similar to the "speed";
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ; ↔ (½)*(m)* (v²) = (KE) ;
___________________________________________________
→ We have: (½)*(m)* (v²) = (KE) ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
→ We divide each side of the equation by: "[(½)* (m)]" ;
___________________________________________________
→ [ (½)*(m)*(v²) ] / [(½)* (m)] = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
to get:
______________________________________________________
→ v² = (KE) / [(½)* (m)]
→ v² = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
→ √ (v²) = √ { 2*(KE) ] / m }
________________________________________________________
→ v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"];
and solve for "v".
______________________________________________________
The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
Answer:

Given:
Radius of ball bearing (r) = 1.5 mm = 0.15 cm
Density of iron (ρ) = 7.85 g/cm³
Density of glycerine (σ) = 1.25 g/cm³
Terminal velocity (v) = 2.25 cm/s
Acceleration due to gravity (g) = 980.6 cm/s²
To Find:
Viscosity of glycerine (
)
Explanation:


Substituting values of r, ρ, σ, v & g in the equation:





