I think the correct answer from the choices listed above is option A. The kinetic energy after the perfectly inelastic collision would be zero Joules. <span>A </span>perfectly inelastic collision<span> occurs when the maximum amount of kinetic energy of a system is lost. Hope this answers the question.</span>
<span>An event that breaks objects into smaller objects or pieces is called destructive force
</span><span>Tornadoes, Hurricanes, Earthquakes, Volcanoes, Tsunamis and more are some of examples
</span><span>Forces that wear down, destroy is right answer</span>
Answer:
(a) 10 m/s
(b) 22.4 m/s
Explanation:
(a) Draw a free body diagram of the car when it is at the top of the loop. There are two forces: weight force mg pulling down, and normal force N pushing down.
Sum of forces in the centripetal direction (towards the center):
∑F = ma
mg + N = mv²/r
At minimum speed, the normal force is 0.
mg = mv²/r
g = v²/r
v = √(gr)
v = √(10 m/s² × 10.0 m)
v = 10 m/s
(b) Energy is conserved.
Initial kinetic energy + initial potential energy = final kinetic energy
½ mv₀² + mgh = ½ mv²
v₀² + 2gh = v²
(10 m/s)² + 2 (10 m/s²) (20.0 m) = v²
v = 22.4 m/s