Given what we know, we can confirm that John Dalton was the first person to show strong empirical evidence for the existence of atoms.
<h3>Who was John Dalton?</h3>
- He was a renowned scientist with knowledge in many fields.
- He was known to be a chemist, meteorologist, and physicist.
- He proposed the atomic theory and carried out experiments to provide supporting evidence.
Therefore, given his proposal of the atomic theory and the experiments he carried out to provide evidence to support his claims, we can confirm that John Dalton was the first person to show strong empirical evidence for the existence of atoms.
To learn more about atoms visit:
brainly.com/question/13981855?referrer=searchResults
Answer:

Explanation:
Due to Coulomb´s law electric force can be described by the formula
, where K is the Coulomb´s constant (
),
= Charge 1 (Na+ in this case),
is the charge 2 (Cl-) and r is the distance between both charges.
Work made by a force is W=F.d and total work produced is the change in energy between final and initial state. this is
.
so we have ![W=W_{f} -W_{i} =(K\frac{q_{(Na+)}q_{(Cl-)}rf}{r_{f} ^{2}})-(K\frac{q_{(Na+)}q_{(Cl-)}ri}{r_{i} ^{2}})=Kq_{(Na+)}q_{(Cl-)[\frac{1}{{r_{f}}} -\frac{1}{{r_{i}}}]](https://tex.z-dn.net/?f=W%3DW_%7Bf%7D%20-W_%7Bi%7D%20%3D%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Drf%7D%7Br_%7Bf%7D%20%5E%7B2%7D%7D%29-%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Dri%7D%7Br_%7Bi%7D%20%5E%7B2%7D%7D%29%3DKq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%5B%5Cfrac%7B1%7D%7B%7Br_%7Bf%7D%7D%7D%20-%5Cfrac%7B1%7D%7B%7Br_%7Bi%7D%7D%7D%5D)
Given that ri= 1.1nm=
and rf= infinite distance
![W=(9x10^{9})(1.6x10^{-19})(-1.6x10^{-19})[\frac{1}{\alpha }-\frac{1}{(1.1x10^{-9})}]=2.1x10^{-19}J](https://tex.z-dn.net/?f=W%3D%289x10%5E%7B9%7D%29%281.6x10%5E%7B-19%7D%29%28-1.6x10%5E%7B-19%7D%29%5B%5Cfrac%7B1%7D%7B%5Calpha%20%7D-%5Cfrac%7B1%7D%7B%281.1x10%5E%7B-9%7D%29%7D%5D%3D2.1x10%5E%7B-19%7DJ)
If you have an aqueous solution that contains 1.5 moles of HCl, the number of moles of ions in the solution is 3.0 moles.
<h2>Further Explanation
</h2><h3>Strong acids </h3>
- Strong acids are types of acids that undergo complete dissociation to form ions when dissolved in water.
- Examples of such acids are, HCl, H2SO4 and HNO3
- Dissociation of HCl
HCl + H₂O ⇔ H₃O⁺ + OH⁻
<h3>Weak acids </h3>
- Weak acids are types of acids that undergo incomplete dissociation to form ions when dissolved in water.
- Examples of such acids are acetic acids and formic acids.
- Dissociation of acetic acid
H₃COOH ⇔ CH₃COO⁻ + H⁺; CH₃COO⁻ is a conjugate base of acetic acid.
<h3>In this case;</h3>
- HCl which is a strong acid that ionizes completely according to the equation;
HCl + H₂O ⇔ H₃O⁺ + OH⁻
- From the equation, 1 mole of HCl produces 1 mole of H₃O⁺ ions and 1 mole of OH⁻ ions.
Therefore;
1.5 moles of HCl will produce;
= 1.5 moles of H₃O⁺ ions and 1.5 moles of OH⁻ ions.
This gives a total number ions of;
= 1.5 + 1.5
= 3 moles of ions
Keywords: Strong acid, weak acid, ions, ionization
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Salts, Acids and Bases