Answer:
1384 kJ/mol
Explanation:
The heat absorbed by the calorimeter is equal to the heat released due to the combustion of the organic compound. C is the total heat capacity of the calorimeter and Δt is the change in temperature from intial to final:
Q = CΔt = (3576 J°C⁻¹)(30.589°C - 25.000°C) = 19986.264 J
Extra significant figures are kept to avoid round-off errors.
We then calculate the moles of the organic compound:
(0.6654 g)(mol/46.07) = 0.0144432 mol
We then calculate the heat released per mole and convert to the proper units. (The conversion between kJ and J is infinitely precise and is not involved in the consideration of significant figures)
(19986.264 J)(1kJ/1000J) / (0.0144432 mol) = 1384 kJ/mol
The Density of the metal is 5.6 g/cm³
<h3>What is the density of a substance?</h3>
The density of a substance is the ratio of the mass and the volume of the substance.
The density of the metal is calculated as follows:
mass of metal = 1.4 kg = 1400 g
volume of metal = 3.2 * 17.1 * 4.6 = 251.712 cm³
Density of metal = 1400 g/251.712 cm³
Density of the metal = 5.6 g/cm³
Therefore, the density of the metal is obtained from the mass and the volume of the metal.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
The answer is barium phosphate
Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!