The answer is D transition state. In the energy profile, the transition state is the highest point. For a reaction, the activation energy is the minimal energy needed to trigger a reaction. The reactants are the start of the reaction and the products are the end of the reaction.
Answer:
you're a strong person so keep on keeping on.
Explanation:
The number of mole will be 65.81 mole.
An ideal gas would be one for which both the overall volume of the molecules and even the forces that exist between them are so negligible as to have no influence on the behavior of something like the gas.
Number of ideal gas can be calculated by using the formula:
PV = nRT
where, p is pressure, n is number of mole, R is gas constant and T is temperature.
Given data:
V= 1750
= 1750 L
P = 125,000 p = 1.2 atm
R = 0.082 L /mole kelvin
T = 273+127 = 400 K
Now, put the value of given data in above equation.
1.23atm x 1750L = n x 0.0820atm x Liter/ mole x kelvin x 400K
n = 65.81 mole.
Therefore, the number of mole will be 65.81 mole
To know more about mole
brainly.com/question/21050624
#SPJ4
Answer:
a) The lewis dot structure is shown in the image attached to this answer
b) The formal charge on each of the atoms is zero
c) bromine has an oxidation state of +5 while fluorine has an oxidation state of -1
d) 90 degrees
e) Square Pyramidal
f) polar bonds
g) polar molecule
Explanation:
The molecule BrF5 has a formal charge of zero. It exhibits an sp3d2 hybridization state with a square pyramidal geometry. The bond angle in the molecule is 90 degrees. It is a molecule of the type AX5E. The oxidation state of bromine is +5 while that of fluorine is -1.
The Br-F bonds are polar. The overall molecule is polar due to asymmetric charge distribution concentrating on the central atom since the molecule is square pyramidal.