Answer:
0.328 atm
Explanation:
Kp is the equilibrium constant calculated based on the pressure, and it depends only on the gas substances. It will be the multiplication of partial pressures of the products raised to their coefficients divided by the multiplication of partial pressures of the reactants raised to their coefficients.
For the equation given, the stoichiometry is 1 mol of NH₃ for 1 mol of H₂S, so they will have the same partial pressure in equilibrium, let's call it p. So:
Kp = pxp
0.108 = p²
p = √0.108
p = 0.328 atm, which is the partial pressure of the ammonia.
Answer:
The correct answer is option D.
Explanation:
When a chemical reaction proceeds the reactants are converted into products. The energy hill represents the potential energy of the reaction.
There are two conditions: If the reaction is endothermic than the energy of the products is greater than the energy of the reactants and ΔH is positive. This energy gain is shown in the form of a peak. In an exothermic reaction, the energy of the products is lower than the reactants and ΔH is negative.
So the suitable option is D which states that the reaction is endothermic and the potential energy gained by the products is higher when a reaction proceeds.
You should classify it as co2 solid as CO2(s) and that small left comes to the bottom right hand side and dry ice is a form of liquid carbon dioxide so u should write it as CO2(l) and that L comes to the bottom right hand sise
Answer:
A. Chemical Reaction
Explanation:
Cellular Respiration is the chemical reaction in which glucose and oxygen are turned into water, carbon dioxide, and energy.
As we know that one mole of any Ideal gas at standard temperature and pressure occupies exactly 22.4 dm³ volume.
Solution for problem:
When 1 mole Neon (Ne) occupies 22.4 dm³ at STP then the volume occupied by 2.25 moles of Neon is calculated as,
= ( 22.4 dm³ × 2.25 moles ) ÷ 1 mole
= 50.4 dm³ 1dm³ = 1 L
Result:
So, 50.4 dm³ (Liter) volume will be occupied by 2.25 moles of Neon gas if it acts ideally at STP.